
A Framework for the Optimization of the WCET of
Programs on Multi-Core Processors

Max John, Michael Jacobs

Department of Computer Science
Saarland University

October 8, 2014

computer science

saarland
university

http://www.cs.uni-saarland.de/

computer science

saarland
universitySetting

Timing-critical applications
I Embedded systems
I Strict deadlines, e.g. in automotive applications
I Need of tight WCET bounds

Multi-core processor with shared bus
I Exploit task parallelism
I However: cores interfere

Usage of a TDMA bus
I Cores no longer interfere

Use static task scheduling

Challenge

I Find static system schedule and bus schedule
I However: Optimal schedule hard to obtain
I Approximation framework needed

Max John Framework for Multi-Core WCET optimization October 8, 2014 1 / 4

computer science

saarland
universitySystem Model

Given input
I Number of processor cores
I Set of tasks, each described by

F Length
F Bus accesses

⌧1

⌧2

⌧3

Variable parameters
I System schedule

F Assigns tasks to cores
F Task order per core

I Bus schedule

Example schedule:

P1 : ⌧1

P2 : ⌧2 ⌧3) overall WCET: 7 time units

bus P1 P1 P2 P2 P1 P1 P1

Max John Framework for Multi-Core WCET optimization October 8, 2014 2 / 4

computer science

saarland
universityContributions

A simple system model
I One behavior per task

An optimization framework
I Goal: reduce the overall WCET
I How: by constructing

F system schedule
F bus schedule

I Modularity
F plug in different heuristics

I Efficient implementation
F based on our system model

Steps towards reality
I Real-world programs have multiple behaviors
I Soundly over-approximate them by a single one

Max John Framework for Multi-Core WCET optimization October 8, 2014 3 / 4

computer science

saarland
universityFuture work

Develop effective heuristics
I Motivation: avoid access overlaps

P1 : ⌧1

P2 : ⌧2 ⌧3

bus P1 P1 P2 P2 P1 P1 P1

Experiments
I Extract traces from real-world programs
I Evaluate effectiveness of heuristics
I Soundly combine several traces to one

F Determine degree of over-approximation

Max John Framework for Multi-Core WCET optimization October 8, 2014 4 / 4

Statically Resolving Computed Calls

via DWARF Debug Information

Florian Haupenthal

October 8, 2014

Motivation

Allowing virtual functions in safety-critical embedded systems

c l a s s A {
pub l i c :

v i r t u a l void f u n c t i o n () {
// g e n e r a l imp l ementa t i on

}
} ;

c l a s s B {
pub l i c :

void f u n c t i o n () {
// s p e c i a l imp l ementa t i on

}
} ;

Setting

Issues for the analysis

i n t main (i n t argc , char ⇤⇤ a rgv) {
A a ;
B b ;

A⇤ aOrB ;

i f (a rgc == 23) {
aOrB = &a ;

} e l s e {
aOrB = &b ;

}

aOrB->function();
}

. . .
lwz r9 , +0(r9)
lwz r0 , +0(r9)
mtspr ctr , r0
lwz r3 , +8(r31)
bc t r l

. . .

Basic idea

Adding an additional information source to the analysis

Binary Control Flow Graph Value Analysis

DWARF

Suggestions for discussions at the poster

I A most likely not too expensive approach
I Evaluation still incomplete
I Works platform and compiler independent

Schedulability-Oriented WCET-Optimization

of Hard Real-Time Multitasking Systems

Arno Luppold | Heiko Falk

2014/10/08

Page 2 Establish schedulability of a not schedulable system

...
● Increase deadline d

● Reduce WCRT r by decreasing WCET c

● Remove functionality

● Increase CPU capabilities

● Compiler optimizations

Page 3 Integer-Linear Program (ILP) Based Singletasking Optimizations

V. Suhendra et al., “WCET Centric Data Allocation to Scratchpad Memory”
in RTSS, 2005, pp. 223–232.

A

D

E

B

C

F

w
F
⩾c

F

w
A
⩾c

A
+w

B
w
A
⩾c

A
+w

D

w
B
⩾c

B
+w

C

w
E
⩾c

E
+w

Fw
C
⩾c

C
+w

F

w
D
⩾c

D
+w

E

min(w
A
)

Page 4 Extension for Periodic Multitasking Systems

Dynamic Priorities:

C. L. Liu and J. W. Layland. Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM
(JACM), 20(1):46–61, 1973.

Fixed Priorities:

● Integration of the classic approaches on WCRT analysis into the
singletasking ILP formulation to allow for scheduling-oriented
optimizations

Page 5 Conclusion and Future Work

● Response-Time Analysis must be considered to effectively
optimize hard real-time multitasking systems.

● Existing ILP based optimizations can be seamlessly used for
multitasking systems using our approach.

● We demonstrated the approach using an ILP based instruction
scratch-pad optimization.

● In the future we want to extend our approach to event-triggered
systems.

Real-Time Systems Group

Accounting for Cache Related Pre-
emption Delays in Hierarchal
Scheduling with Local EDF Scheduler

Will Lunniss1 Sebastian Altmeyer2 Robert I. Davis1
1Department of Computer Science, University of York, UK

{wl510, rob.davis}@york.ac.uk
2Computer Systems Architecture Group, University of Amsterdam, Netherlands

altmeyer@uva.nl

Real-Time Systems Group

Introduction

! Hierarchal Scheduling
! Run multiple components on a single processor

! Components should be isolated and not interfere with each other

! Components are scheduled using a global scheduler
•  Assume non-pre-emptive

! Tasks within a component are scheduled using a local scheduler
•  Assume pre-emptive EDF

! Cache Related Pre-emption Delays (CRPD)
! Caused by the need to re-load blocks into cache that have been

evicted by a pre-empting task

! Tasks in other components could evict cache blocks, causing ‘inter-
component’ CRPD

Real-Time Systems Group

Accounting for CRPD in Hierarchal Scheduling

! CRPD due to tasks in the same component
! Lunniss et al. [1] Combined Multiset approach

! Shared access to the processor
! Shin and Lee [2] Supply bound function

! CRPD due to tasks in other components
! Bound the number of times a component can be both suspended and

resumed in an interval of length t

! Calculate the set of blocks that if evicted by the tasks in the other
components may need to be reloaded

[1] Lunniss, W., Altmeyer, S., Maiza, C., and Davis, R. I. Integrating Cache Related Pre-emption Delay Analysis into EDF Scheduling.
In Proceedings 19th IEEE Conference on Real-Time and Embedded Technology and Applications (RTAS) (2013), 75-84.
[2] Shin, I. and Lee, I. Periodic Resource Model for Compositional Real- Time Guarantees. In Proceedings of the 24th IEEE Real-
Time Systems Symposium (RTSS) (2003), 2-13.

Real-Time Systems Group

Results
Small server periods
maximise schedulability
when component CRPD is
not considered

In fact it is important to
balance the server period

Real-Time Systems Group

Conclusions/Future Work

! New analysis for bounding inter-component CRPD with
a local EDF scheduler

! Based on approaches for bounding inter-component
CRPD with a local FP scheduler
!  “Accounting for Cache Related Pre-emption Delays in Hierarchical

Scheduling”

! Presentation tomorrow during Session 6 (13:50)

! Showed that inter-component CRPD must be carefully
considered when selecting the server period

! Analysis uses the tasks’ deadlines to bound inter-
component CRPD which can be pessimistic
! Aim to investigate other implementations to improve precision

Alignment of Memory Transfers of a
Time-Predictable Stack Cache

Sahar Abbaspour Florian Brandner

Embedded Systems Engineering Sect. Unité d’Informatique et d’Ing. des Systèmes
Technical University of Denmark ENSTA-ParisTech

This work is partially supported by the EC project T-CREST.

1/5 Alignment of Memory Transfers of a Time-Predictable Stack Cache

Introduction

I Stack Cache
I Specialized cache dedicated to stack data
I Window following the logical stack of function calls

I Reserve: Stack frames are allocated upon entering a
function: potential spilling

I Free: Stack frames are freed immediately before returning
from a function

I Ensure: Compiler ensures a valid stack cache state:
potential filling

I Spilling/filling causes unaligned memory transfers
I Increases analysis complexity
I Cuases redundant transfers

=) Transfers should be aligned to memory’s burst size

2/5 Alignment of Memory Transfers of a Time-Predictable Stack Cache

Block-Aligned Stack Cache

I Hardware extension to align memory transfers
I Stack cache organized in burst-sized blocks

I Reserve one block as alignment buffer

I Spilling/filling of whole blocks only
I Alignment buffer rules over/underflows out
I Improved utilization of bandwidth
I Very low hardware overhead

I Simple WCET analysis (alignment is guaranteed)
I Experiments

I Compare against padding and unaligned transfers
I Impact on runtime/analysis overhead

3/5 Alignment of Memory Transfers of a Time-Predictable Stack Cache

Experimental Results

Mibench benchmarks compiled using LLVM compiler, running on the Patmos
processor

b
a
s
i
c
m
a
t
h
-
t
i
n
y

b
i
t
c
n
t
s

c
j
p
e
g
-
s
m
a
l
l

c
r
c
-
3
2

c
s
u
s
a
n
-
s
m
a
l
l

d
b
f

d
i
j
k
s
t
r
a
-
s
m
a
l
l

d
j
p
e
g
-
s
m
a
l
l

d
r
i
j
n
d
a
e
l

e
b
f

e
r
i
j
n
d
a
e
l

e
s
u
s
a
n
-
s
m
a
l
l

↵
t
-
t
i
n
y

i
↵
t
-
t
i
n
y

p
a
t
r
i
c
i
a

q
s
o
r
t
-
s
m
a
l
l

s
a
y
-
t
i
n
y

s
e
a
r
c
h
-
l
a
r
g
e

s
e
a
r
c
h
-
s
m
a
l
l

s
h
a

s
s
u
s
a
n
-
s
m
a
l
l

0

1

2

3

4

S
t
a
c
k
C
a
c
h
e
S
t
a
l
l
C
y
c
l
e
s
(
n
o
r
m
a
l
i
z
e
d
)

block-aligned padding unaligned

Number of stall cycles normalized to our block-aligned stack cache extension

4/5 Alignment of Memory Transfers of a Time-Predictable Stack Cache

Conclusion

I Padding is a simple solution to the alignment problem
I Wastes space in stack cache
I Increases spilling and filling
I . . . up to a factor of 4

I Block-aligned stack cache
I Reasonable trade-off with moderate hardware overhead
I Average performance comparable to unaligned transfers
I Simple analysis

5/5 Alignment of Memory Transfers of a Time-Predictable Stack Cache

The WCET Analysis using
Counters !

- A Preliminary Assessment -

Remy Boutonnet, Mihail Asavoae
!

VERIMAG / UJF

JRWRTC 2014 — 08 OCT 2014

Typical Workflow for the WCET Analysis !
!

JRWRTC 2014 - The WCET Analysis using Counters

Typical Workflow for the WCET Analysis !
!

JRWRTC 2014 - The WCET Analysis using Counters

!
!
x = 0;
while (c1) {

 if (x < 10) {
 …

 }
!
 if (c2) {
 …
 x++;

 }
}
!
!
Property : At most 10 iterations of the loop to execute A & B

A

B

x = 0

while c1

x < 10

if c2

B0

B1

B2

B4

B3

B5

B6
x++

Infeasible paths (I)!
!

JRWRTC 2014 - The WCET Analysis using Counters

!
!
x = 0; alpha,beta,gamma=0;
while (c1) {
 alpha ++;
 if (x < 10) {
 …
 beta ++;
 }
!
 if (c2) {
 …
 x++;
 gamma++
 }
}
!
!
Property : At most 10 iterations of the loop to execute A & B

A

B

x = 0

while c1

x < 10

if c2

B0

B1

B2

B4

B3

B5

B6
x++

Infeasible paths (II)!
!

JRWRTC 2014 - The WCET Analysis using Counters

Invariant Generation !
!
x = 0; alpha,beta,gamma=0;
while (c1) {
 alpha ++;
 if (x < 10) {
 …
 beta ++;
 }
!
 if (c2) {
 …
 x++;
 gamma++
 }
}
!
!

A

B

JRWRTC 2014 - The WCET Analysis using Counters

 gamma >= 0
 10 - beta - gamma+ alpha >= 0!
 alpha - gamma >= 0
 -beta + alpha >= 0

Question (I)!
!
x = 0; alpha,beta,gamma=0;
while (c1) {
 alpha ++;
 if (x < 10) {
 …
 beta ++;
 }
!
 if (c2) {
 …
 x++;
 gamma++
 }
}
!
!

A

B

how to get them?

JRWRTC 2014 - The WCET Analysis using Counters

 gamma >= 0
 10 - beta - gamma+ alpha >= 0!
 alpha - gamma >= 0
 -beta + alpha >= 0

Question (II)!
!
x = 0; alpha,beta,gamma=0;
while (c1) {
 alpha ++;
 if (x < 10) {
 …
 beta ++;
 }
!
 if (c2) {
 …
 x++;
 gamma++
 }
}
!
!

A

B

how to get them?

how many counters…?

JRWRTC 2014 - The WCET Analysis using Counters

 gamma >= 0
 10 - beta - gamma+ alpha >= 0!
 alpha - gamma >= 0
 -beta + alpha >= 0

Question (…)!
!
x = 0; alpha,beta,gamma=0;
while (c1) {
 alpha ++;
 if (x < 10) {
 …
 beta ++;
 }
!
 if (c2) {
 …
 x++;
 gamma++
 }
}
!
!

A

B

how to get them?

how many counters…?

all invariants are useful?

is the method scalable?

what kind of app?

JRWRTC 2014 - The WCET Analysis using Counters

 gamma >= 0
 10 - beta - gamma+ alpha >= 0!
 alpha - gamma >= 0
 -beta + alpha >= 0

Ask!
!
x = 0; alpha,beta,gamma=0;
while (c1) {
 alpha ++;
 if (x < 10) {
 …
 beta ++;
 }
!
 if (c2) {
 …
 x++;
 gamma++
 }
}
!
!

A

B

how to get them?

how many counters…?

all invariants are useful?

is the method scalable?

what kind of app?

POSTER

JRWRTC 2014 - The WCET Analysis using Counters

 gamma >= 0
 10 - beta - gamma+ alpha >= 0!
 alpha - gamma >= 0
 -beta + alpha >= 0

THANK YOU!
!

Adaptation of RUN to
Mixed-Criticality Systems
Romain GRATIA IRT SystemX
Thomas ROBERT Institut Mines-Telecom
Laurent PAUTET Institut Mines-Telecom

2

Introduction and Motivation

2

Sharing a multi-core platform between
applications of different criticality levels

Compute Worst Case Execution Times (WCET)
far greater than Average Execution Times in

order to be safe.
Is it always relevant ?

The higher the criticality level, the safer the
WCET must be

Scheduler has to properly handle the
switching from Optimistic to Safe modes

8 ms5 ms

6 ms

12 ms7 ms

CORE CORE CORE CORE

Optimistic
WCET

Safe
WCET

T1(HI)

T2(HI)

T3(LO)

Mode change & the RUN algorithm

� RUN
� Optimal global multi-core

scheduling algorithm
� Fewer preemptions and

migrations than other optimal
global scheduling algorithms

� Two-steps algorithm
� Based on a hierarchy of Primal

and Dual servers

3

𝑇

𝑆

S

𝑇 𝑇 𝑇

𝑆

𝑆∗ 𝑆∗

� Mode Change
� Optimistic & Safe modes called

respectively LO-mode & HI-mode
� Mode change triggered by a Timing

Failure Event (TFE)

0 1 2 3 4 5 6

t
T2 T1 T2 T1

0 1 2 3 4 5 6
t

T1

Deadline missed TFE

T2 T1

Execution without Mode Change

Execution with Mode Change

𝑆
𝑆∗

Adaptation of RUN to Mixed-Criticality systems

4

� Compute RUN schedule for HI-mode
� Split HI tasks in LO-mode part & remaining part up to HI-mode
� Define remaining parts as Modal Servers
� Allocate as many as possible LO tasks to Modal Servers
� Compute a RUN schedule for remaining LO tasks independently

𝑆∗
S

𝑆∗

𝑇 𝑀𝑆 𝑇 𝑀𝑆 𝑇 𝑀𝑆 𝑇 𝑀𝑆
𝑇𝑇𝑇

𝑇 𝑇∅
𝑇

𝑆 𝑆

∅

𝑆

S

𝑆

𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇

𝑆∗ 𝑆∗

𝑇

� Objective: reduce the required number of processors for the
scheduling of a task set compared to non-modified RUN

Example

5

𝑇7 { }
,

𝑇 ,

𝑆1234 { , , , }

𝑇6 { }
, 𝑇5 { }

, 𝑇8 { }
,∅

𝑇 ,

𝑇 ,

𝑇 , 𝑇 ,

𝑇 ,

𝑇 ,

𝑇 ,

𝑆2 { }
, 𝑆4 { }

,𝑆3 { }
,

𝑆1 { }
∗ , 𝑆2 { }

∗ , 𝑆3 { }
∗ , 𝑆4 { }

∗ ,

𝑆1 { }
,

𝑀𝑆 𝑀𝑆 𝑀𝑆 𝑀𝑆

Task set / Mode Ceiling utilization

LO+HI / HI-mode 5

Our RUN Adaption 4

Task
name

Period Criti-
cality
level

Utiliza-
tion

(LO-mode)

Utiliza-
tion

(HI-mode)

T1 5 Hi 0,6 0,85

T2 2 Hi 0,5 0,75

T3 12 Hi 0,5 0,8

T4 10 Hi 0,4 0,6

T5 8 Low 0,25 0,25

T6 15 Low 0,25 0,25

T7 3 Low 0,5 0,5

T8 20 Low 0,125 0,125

Introduction and motivation
Model and constraints
Experimental results

Conclusion
Le Havre University

Study of Temporal Constraints for Data

Management in Wireless Sensor Networks

Abderrahmen Belfkih, Bruno Sadeg, Claude Duvallet, Laurent

Amanton

{Abderrahmen.Belfkih,Bruno.Sadeg,Claude.Duvallet,

Laurent.Amanton}@univ-lehavre.fr

Le Havre University

8th Junior Researcher Workshop on Real-Time Computing

Abderrahmen Belfkih JRWRTC 2014 Temporal Constraints for Data Management in WSN 1 / 5

Introduction and motivation
Model and constraints
Experimental results

Conclusion
Le Havre University

Introduction and motivation

Figure: Wireless Sensor Networks

Introduction

1 WSN are deployed without considering

the data deadlines.

2 Many WSN applications require a strict

deadline for data delivery.

3 Researchers are interested in data

processing techniques to increase the

network lifetime.

Motivation

1 We study temporal constraints and data

arrival times from sensors to users.

2 We test two technologies: abstract

database and periodic data collection.

3 We identify the factors which enhance the

respect of temporal constraints.

Abderrahmen Belfkih JRWRTC 2014 Temporal Constraints for Data Management in WSN 2 / 5

Introduction and motivation
Model and constraints
Experimental results

Conclusion
Le Havre University

Model and constraints

Data collection with remote database

Sensor network

1

User 3

Database server

Queries

3

Base Station

Data collection

2

User 1

Data logging

User 2

response

1 Sensor nodes send periodically data to

the base station.

2 The base station inserts sensor data into

the remote database.

3 Users can connect to the database to

get information about WSN.

Query processing with TinyDB

Sensor network

1

User 3

Database server

Queries

3

Base Station

Data collection

2

User 1 User 2

4
Queries Queries

Abstract database
TinyDB

Data logging

response

response
response

1 User sends SQL-like query to the base

station via the the abstract database.

2 The base station broadcast these

queries over the network.

3 The base station sends received data to

the user via the abstract database.

Abderrahmen Belfkih JRWRTC 2014 Temporal Constraints for Data Management in WSN 3 / 5

Introduction and motivation
Model and constraints
Experimental results

Conclusion
Le Havre University

Experimental results

Data collection Convergence time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
co

n
d
)

Number of nodes

Data collection

Query processing convergence time
(TinyDB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
co

n
d
)

Number of nodes

Query processing

Completed Cycle Time for data collection
& Query processing (TinyDB)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
co

n
d
)

Number of nodes

Data collection
Query processing

Impact of network topologies time (sec)

Topologies Data collection Query processing
Star 62.312 1.832
Mesh 56.002 1.362
Grid 54.121 2.163
Tree 53.515 2.143

Impact of choosing the database time(sec)

Query type PostgreSQL MySQL SQLite
Insert queries 9.397 48.626 72.788
Select queries 0.992 0.690 0.225

Abderrahmen Belfkih JRWRTC 2014 Temporal Constraints for Data Management in WSN 4 / 5

Introduction and motivation
Model and constraints
Experimental results

Conclusion
Le Havre University

Conclusion

•
The convergence time has an impact on the process of data collection.

•
The network topology and the routing protocol, together may play an

important role on data collection time.

•
The timing-response advantage of using a TinyDB approach compared to

accessing the data stored in an external database.

•
The abstract database approach has shown performances for data

collected time and for network convergence time than the data collection

approach.

•
The network topology and the routing protocol with the right choice of

approach can improves the temporal constraints in WSN.

Abderrahmen Belfkih JRWRTC 2014 Temporal Constraints for Data Management in WSN 5 / 5

&

www.cea.fr

An Approach for Verifying
Concurrent C Programs

Amira METHNI (CEA/CNAM)
Matthieu LEMERRE (CEA) & Belgacem BEN HEDIA (CEA)
Serge HADDAD (ENS Cachan) & Kamel BARKAOUI (CNAM)

October 8, 2014th

Cliquez pour modifier le style du titre

DACLE Division| June 2013© CEA. All rights reserved | 2&

Introduction

Context and problemtaic
C is a low level language

Concurrency is hard to verify

Verifying C code is challenging

Manual inspection is error-prone and costly

Method and tools adapted to this type of engineering

Approach for design assistance and formal verification

2

Objectives

JRWRTC– October 8, 2014

Cliquez pour modifier le style du titre

DACLE Division| June 2013© CEA. All rights reserved | 3& 3

Related work

JRWRTC– October 8, 2014

SLAM [Ball, T & al],
BLAST [Henzinger, T &
al]

- CEGAR (ConterExample-Guided
Abstraction Refinement)
- Model checking/proofs/static
analysis

- Limited support for
concurrent properties
- Only safety properties

Modex [Holzmann, G.J.
& al]

- Model extraction
- Modeling language: Promela

- No support for pointers
- Well suited or specifying
communication protocols

PlusCal [Lamport, L.] - High level language
- TLA logic

- No support for pointers
data structure and
function calls

[Ball, T & al] : The SLAM project: Debugging System Software via Static Analysis. SIGPLAN Not, 2002
[Henzinger, T & al] : Software Verification with BLAST. Springer, 2003, 235-239
[Holzmann, G.J. & al] : Automating Software Feature Verification. Bell Labs Technical Journal, 2000, pp72-87
[Lamport, L.] : The PlusCal Algorithm Language. In ICTAC, 2009, pp36-60

Cliquez pour modifier le style du titre

DACLE Division| June 2013© CEA. All rights reserved | 4& 4

General approach

JRWRTC– October 8, 2014

C files

Integration

Formalization

Manual
specification

Trace C

Couverture C

Couverture C

TLC Model
checker

Property
satisfied?

C trace

Yes
No

TLA+ trace

C coverage

TLA+ coverage

TLA+
Its semantics is suited to express a
programming language

Safety and liveness properties

Structural concepts: Refinement of
specifications

Supporting tools : TLC model-checker ,
TLAPS prover.

Standard
modules

Runtime
module

Parameters
module

TLA+
properties

Atomic primitives,
hardware …

TLA+
specifications

C2TLA+

Supported features

Data types: int, struct, enum

Pointers, pointer arithmetic, array
indexing

All kinds of control flow statement

Recursion

Concurrency

Cliquez pour modifier le style du titre

DACLE Division| June 2013© CEA. All rights reserved | 5& 5

General approach

JRWRTC– October 8, 2014

C files

Integration

Formalization

Manual
specification

Trace C

Couverture C

Couverture C

TLC Model
checker

Property
satisfied?

C trace

YesNo

TLA+ trace

C coverage

TLA+ coverage

Integration

Manually specified modules
• To provide concurrency primitives or

hardware that can not be expressed in C

• To define properties

Abstract modules

Standard
modules

Runtime
module

Parameters
module

TLA+
properties

Atomic primitives,
hardware …

TLA+
specifications

C2TLA+

• Relate states of the abstract
specification with states of the concrete
specification

• Property preservation through
refinement

• Substitute a concrete C specification
with an equivalent simpler one.

Using TLC to verify properties
Safety (Invariants)

Liveness (program termination)
Getting the C trace and C coverage

Cliquez pour modifier le style du titre

DACLE Division| June 2013© CEA. All rights reserved | 6&

Conclusion

Conclusion
Approach for specification and verification of C code

Automatic translation (C2TLA+) based on a set of rules.

Integrate generated modules with other manually specified specifications and

abstract specifications.

Verifying a set of properties (safety and liveness).

Future work
To further study the refinement between two C programs

To apply the approach on a concrete case study (PharOS)

To benefit from dependencies analysis of shared variables in order to generate an

optimized TLA+ code.

To use TLAPS and C2TLA+ in order to prove that a (translated) specification

implements an abstract one or to prove properties on the specification.

6JRWRTC– October 8, 2014

*

* Lemerre, M. et al. Method and Tools for Mixed-Criticality Real-Time Applications within PharOS.In Proceedings of AMICS 2011

Alexandre Esper
Eduardo Tovar

08/10/14

Goal:
•  Adapt MrsP resource sharing protocol to work with servers through

bandwidth inheritance
•  Adapt NPS-F schedulability test to introduce adapted version of MrsP

•  Generalization of PCP/SRP Response Time Analysis to multicore
•  Defined for fully partitioned systems where tasks are scheduled using

fixed priorities
•  Only one task per processor accessing a resource at any time
•  Blocked tasks can undertake load of tasks holding the resource that has

been preempted

t

08/10/14

•  Semi-partitioned scheduling algorithm
•  Server-based approach
•  Does not consider shared resources
•  Servers serve one or more tasks using EDF

t

Goal:
•  Account for shared resources in NPS-F by adapting MrsP
Challenges:
•  MrsP is defined for fixed priority while NPS-F uses EDF
•  MrsP is defined for fully partitioned while NPS-F uses servers

1.  Prove the correctness of the schedulability test equations provided
2.   Define approach for mapping of the tasks to the servers:

–  Challenge ! circular dependencies with the schedulability test provided
3.   Extend the approach to any server based scheduling algorithm for

multicore architectures (e.g., RUN/SPRINT)

08/10/14

&

www.cea.fr

Externalisation of Time-Triggered
communication system in BIP

high level models
H. GUESMI(1, 3), B. BEN HEDIA(1), S. BLIUDZE(2), S. BENSALEM(3)

(1)CEA, LIST, Embedded Real Time Systems Laboratory, France
(2) RISD, Ecole polytechnique de LAUSANNE, Switzerland

(3) Verimag, Université Joseph Fourrier, France

Cliquez pour modifier le style du titre

DACLE Division| October 2014© CEA. All rights reserved | 2&

Embedded critical real time systems:

Increasing complexity

Methods using a posteriori verification to ensure correctness

Æ At best a major factor in the development cost and, and at worst, simply

impossible.

Rigorous system design flow [3][6]:
Formal accountable & iterative process,

Component-based process,

Correctness-by-construction.

The challenge = Apply the Rigorous Design Flow to the Time-Triggered

domain

Correctness-by-construction

Predictability & determinism

Introduction & motivation

Specifications Correct Real-
time system

T1

T3

T2

Cliquez pour modifier le style du titre

DACLE Division| October 2014© CEA. All rights reserved | 3&

Concepts

BIP Framework [1][2]:
Structure of a real-time BIP model:

BIP tool chain: parser, code generators, verification and validation tools..

Time-Triggered paradigm [4][5]:
Global synchronized time: periodic clock synchronisation

Temporal control structure of tasks: predefined start and termination instants.

Time-Triggered interface: data-sharing boundary between two communicating

subsystems

Priorities

Interactions

B e h v i o ra Timed automata

Connectors representing interactions

Mechanism for Conflict resolution between interactions

p1 p2 p3

q

x є [2,3]
x := 0

x == 1
x := 0

L1

L2

L

x xW RR

W

Cliquez pour modifier le style du titre

DACLE Division| October 2014© CEA. All rights reserved | 4&

1/ Transfer function internalisation:
Both automata and connectors are
modified

The global behavior of the model
remains intact.

2/ Connector to TT interface:
Each connector is transformed into
TT interface component and 2
connectors.

Approach

Physical Model
BIP-TT Model

TT paradigm concepts:
•Communication system
•Global Time
•Temporal structure of tasks

System Model
Annotated BIP Model

TT platform
Executable code

Transfer function
internalisation

Connector to TT
interface

Source-to-Source Transformations

1

2

Cliquez pour modifier le style du titre

DACLE Division| October 2014© CEA. All rights reserved | 5&

Conclusion

A 2-step transformation process:
Simplify the connector transfer functions by modifying components automata,
Modify connector with simple transfer functions into TT interfaces.

Æ We avoid adding new components that integrate communication specificities
into the system .

Æ We avoid the question: “These new components belong to which task?”

Work in progress
Study the alternative approach, based on adding a communication component
per connector,

Define a trade-off if possible,
Integrate other TT concepts & prove the correctness of transformations.

[1] BIP2 Documentation, July 2012.
[2] T. Abdellatif. Rigourous Implementation of real-time
Systems. PhD thesis, UJF, 2012.
[3] P. Bourgos. Rigorous design flow for program-ming
manycore platforms.

.,The 19th IEEE, pages 168–177. IEEE, 1998.
[6] J. Sifakis. Rigorous system design. Foundations and
Trends R in Electronic Design Automation,
6(EPFL-ARTICLE-185999):293–362, 2012.

[4] H. Kopetz. The time-triggered approach to real-time
system design. Predictably Dependable Computing
Systems. Springer, 1995.
[5] H. Kopetz. The time-triggered model of computation.
In Real-Time Systems Symposium, 1998. Proceedings

Centre de Grenoble
17 rue des Martyrs

38054 Grenoble Cedex

Centre de Saclay
Nano-Innov PC 172

91191 Gif sur Yvette Cedex

Thank you!

Towards(Exploi.ng(Limited(Preemp.ve(Scheduling(for(
Par..oned(Mul.core(Systems(

Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat

Introduction and Motivation

•  Shared hardware in multicore systems
–  Caches
–  Buses … etc

•  Increases analysis pessimism in multicore schedulability analysis
–  Difficulties in bounding the Worst Case Execution Time due to

resource contention

L2(cache(

L1(cache(

CPU(

core(1(

L1(cache(

CPU(

core(2(

Solution: enforce temporal separation

System Model

τi "
βi,1" βi,2" … βi,k"

Non-preemptive blocks:
•  Optimal preemption points
•  Regions of code accessing shared resource e.g., cache

regions(of(code(that(do(not(access(L2(cache(regions(of(code(that(access(L2(cache(

Period

relative deadline
Preemption related overheads accounted

in the WCET of the following block

τi "
βi,1" βi,2" βi,k"…"

Earliest release
time

 βi,k"

Latest release
time

≤ Actual release ≤
time

τi "
βi,1" βi,2" βi,k"…"

Earliest deadline

 βi,k"

Latest deadline ≤ Actual deadline ≤

Temporal(separa.on(constraints(on(nonBpreemp.ve(blocks(

Mathematical
Optimization

Release time,
Deadline

and a processor
per block

Feasibility Window Derivation

Minimize
number of cores

Example

Task βi,k Ci Ti

τ1 β1,1=3 3 5

τ2 β2,1=3
β2,2=3

6 10

τ3 β3,1=3
β3,2=3

6 10
Processor(2(

τ3(
10(3(

τ1(
10(5(3(

Processor(1(

3(

τ2(
10(

τ2(
10(3(

regions(of(code(that(do(not(access(L2(cache(regions(of(code(that(access(L2(cache(

Feasibility(window(

Feasibility(window(

6(

6(

Utot(=(1.8(τ3(

Summary and Future Work

•  Limited preemptive scheduling for efficient utilization of multicore
platforms

–  Input: Task parameters
–  Output: Pseudo release times and deadlines for non-preemptive blocks, and a

processor that guarantees temporal separation

•  Implement and evaluate the approach
–  Exact solution on minimum number of cores Vs. heuristics (that may use few more

cores)

Multi-Criteria Optimization
of Hard Real-Time Systems

Nicolas Roeser, Arno Luppold and Heiko Falk
JRWRTC, 2014-09-09

Slide 2 Multi-Criteria Optimization of Hard Real-Time Systems

Optimization of So�ware for Embedded Systems

I WCET
!
< deadline

I other constraints,
e.g. low energy consumption () longer ba�ery life)

Possible compilation results:

t

deadline

0 unoptimizedmin(WCET) min(E)

Slide 3 Multi-Criteria Optimization of Hard Real-Time Systems

ILP Model

A

CB

D

V. Suhendra et al. WCET Centric Data Alloca-
tion to Scratchpad Memory. RTSS 2005.

Do notminimize theWCET,
but constrain it:

w⇤
main D

Add function specialization
(size "), and program SPM
allocation (WCET #, energy
consumption #).

Further constraints, like for energy:

e⇤f � Nf ,f · Ef +
X

g2F
Nf ,g ·

⇣
e⇤g0 · pg + e⇤g ·

�
1� pg

�⌘

Slide 4 Multi-Criteria Optimization of Hard Real-Time Systems

Optimization Results

Solving the ILP problem sets binary decision variables for the
combined optimizations:

I specialize the function? I put the function into SPM?

Multi-criteria optimization results:

t

deadline

0 unoptimizedmin(WCET) min(E)

multi-crit

Slide 5 Multi-Criteria Optimization of Hard Real-Time Systems

Conclusion

I ILP-based multi-criteria optimization for hard real-time
systems) relaxed timing with energy and/or memory savings,

I optimum solution;
I other/further constraints and other optimizations can be used

as long as they can be described with ILP formulae.

Future Work:
I generic multi-criteria optimization framework in compiler,
I ability to handle multi-tasking systems.

