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Context

• Focus on hard real-time systems

• Interest in programming of large systems specified as high-level
functionalities

• Up to ≈ 1000 high-level functionalities in RT system
software (e.g. aileron command, read pressure sensor, etc.)
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Task Clustering
Problem

• Functionalities implemented via real-time threads (tasks) by
programmers

• RT operating systems (OS) support a limited number of
concurrent threads (several tens of OS tasks)
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Task Clustering
RTOS limitations

Having numerous threads:

• Scheduling overhead
◦ Scheduler level: handle large queues
◦ Increase of context switches
⇒ increase the risk of cache misses (larger WCET)

• Memory
◦ Task level: one stack by task
◦ Scheduler level: increase in the number of priorities required
⇒ number of preemption increases
⇒ execution stack grows

→ Several functionalities grouped together in a thread
Manually made in industry (error prone, tedious)
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System model used

Program = a set of tasks τi :

Ci

Di

Ci

Di

0

Ti Ti

• Ti : period

• Di : constrained relative deadline
(Di ≤ Ti)

• Ci : worst case execution time
(WCET)

Current limitations: independent and synchronous tasks (offset
= 0) in a uniprocessor system.
Fixed task-priority and fixed-job-priority assignment considered.
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Objective

• Automatically grouping functionalities into tasks to minimize
their number:

• while respecting original timing constraints,

• while preserving schedulability.

{       } {       } {       }, ,, ,
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Cluster model

• Cluster τi and τj into τij with Di ≤ Dj

◦ Cij = Ci + Cj

◦ Tij = Ti = Tj (by restriction we only regroup tasks with equal
periods)

◦ Which deadline for the cluster?

10 de 24



Cluster model : Deadline choice for the cluster

• Case 1: Maximum deadline Dj

◦ if (Dj − Cj ≤ Di )
◦ and in that order

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15
=

(b) System after clustering τi with τj

Schedulability preserved ⇒ Zero-cost clustering
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Cluster model : Deadline choice for the cluster

• Case 1: Maximum deadline Dj

◦ if (Dj − Cj ≤ Di ) or generalizing (Rj − Cj ≤ Di )
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Cluster model : Deadline choice for the cluster
• Case 2: Minimum deadline Di

◦ Taking minimum deadline ensures respect of both initial ones
◦ or (order does not matter)

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15

=

(b) System after clustering τi with τj
• System may become unschedulable after clustering

⇒ Schedulability must be checked after each non zero-cost
clustering!
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Cluster model
Valid cluster

Theorem
Let S be a task set and Φ be a priority assignment. Let S ′ the
task set S after clustering of two tasks τi and τj .
S ′ is schedulable under Φ ⇒ S is schedulable under Φ.

However, the converse is not always true.

Definition
The clustering is valid iff schedulability is preserved after
clustering
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Complexity: a schedulability problem

Reminder:

• sufficient test
◦ often in linear complexity
◦ ensures system schedulability
◦ sub-optimal

• necessary test
◦ does not ensure schedulability

• exact ⇒ sufficient AND necessary test
◦ generally NP-hard

In our case, use of sufficient or exact tests to guarantee system
correctness
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Complexity: and a partitionning problem

Example
Some possible combinations (15 possibilities) of 4 tasks τa, τb, τc et τd :

A
B

C
D

A
B

C
D

A
B

C
D

A
B

C
D

• Combinatorial explosion: number of possible clusterings in
the Bell number range (e.g.,B500 = 10844)
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Overall Complexity

• NP-hard: reduced from bin-packing with fragile objects
• Given:
◦ a set of bins of capacity ci
◦ a set of object with a size si and a fragility fi

• Assign objects to a minimum number of bins such that for
each bin j :
◦

∑
si ≤ cj

◦
∑

si ≤ min(fi )

• Task clustering analogy:
◦ bin ⇒ cluster
◦ object ⇒ task
◦ fragility ⇒ deadline

→ Motivates to work towards a heuristic
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Heuristic principles

• Classical optimization techniques are based on cost functions
to choose “promising candidates”

⇒ Schedulability test used as a cost function.
(Applied to greedy BFS, but works for simulated annealing, A*, etc.)

• Perform in priority zero-cost clustering

• Use sufficient test when exact impracticable
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A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search
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Results under DM
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Figure : Task clustering under Deadline Monotonic scheduling
algorithm (u = processor utilization factor)
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Results under EDF
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processor utilization factor)
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Conclusion

We presented in this talk:

• the task clustering problem,

• its complexity,

• some heuristic principles,

• and a first heuristic.

Current and future work:

• adding precedences between tasks

• then applying task clustering to multi-processor systems
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