Minimize the cardinality of a real-time task set through Task Clustering

Antoine Bertout, Julien Forget and Richard Olejnik

Laboratoire d'Informatique Fondamentale de Lille (LIFL) Univ. Lille, France RTNS'2014 Versailles

Outline

Introduction

Definition

Complexity

Solution

Conclusion

Outline

Introduction

Definition

Complexity

Solution

Conclusion

Context

- Focus on hard real-time systems
- Interest in programming of large systems specified as high-level functionalities

• Up to ≈ 1000 high-level functionalities in RT system software (e.g. aileron command, read pressure sensor, etc.)

Task Clustering

Problem

- Functionalities implemented via real-time threads (tasks) by programmers
- RT operating systems (OS) support a **limited number** of concurrent threads (several tens of OS tasks)

Task Clustering

RTOS limitations

Having numerous threads:

- Scheduling overhead
 - Scheduler level: handle large queues
 - Increase of context switches
 - \Rightarrow increase the risk of cache misses (larger WCET)
- Memory
 - Task level: one stack by task
 - $\circ~$ Scheduler level: increase in the number of priorities required
 - \Rightarrow number of preemption increases
 - \Rightarrow execution stack grows

Task Clustering

RTOS limitations

Having numerous threads:

- Scheduling overhead
 - Scheduler level: handle large queues
 - Increase of context switches
 - \Rightarrow increase the risk of cache misses (larger WCET)
- Memory
 - Task level: one stack by task
 - $\circ~$ Scheduler level: increase in the number of priorities required
 - \Rightarrow number of preemption increases
 - \Rightarrow execution stack grows

\rightarrow Several functionalities grouped together in a thread Manually made in industry (error prone, tedious)

Outline

Introduction

Definition

Complexity

Solution

Conclusion

System model used

Program = a set of tasks τ_i :

• T_i: period

- D_i : constrained relative deadline $(D_i \leq T_i)$
- *C_i*: worst case execution time (WCET)

Current limitations: independent and synchronous tasks (offset = 0) in a uniprocessor system.

Fixed task-priority and fixed-job-priority assignment considered.

Objective

- Automatically grouping functionalities into tasks to minimize their number:
- while respecting original timing constraints,
- while preserving schedulability.

Cluster model

• **Cluster** τ_i and τ_j into τ_{ij} with $D_i \leq D_j$

- $\circ \ C_{ij} = C_i + C_j$
- $T_{ij} = T_i = T_j$ (by restriction we only regroup tasks with equal periods)
- Which deadline for the cluster?

(b) System after clustering τ_i with τ_j Schedulability preserved \Rightarrow **Zero-cost clustering**

Case 1: Maximum deadline D_j
o if (D_i − C_i ≤ D_i) or generalizing (R_i − C_i ≤ D_i)

• and $\tau_{ij} = \tau_j \leq D_i$ or generalizing (T_j) • and $\tau_{ij} = \tau_j = \tau_j$ in that order

(a) Initial system with tasks τ_i, τ_x et τ_j

(b) System after clustering τ_i with τ_j Schedulability preserved \Rightarrow **Zero-cost clustering**

- Case 2: Minimum deadline D_i
 - Taking minimum deadline ensures respect of both initial ones

(a) Initial system with tasks τ_i, τ_x et τ_j

(b) System after clustering τ_i with τ_j
System may become unschedulable after clustering

- Case 2: Minimum deadline D_i
 - Taking minimum deadline ensures respect of both initial ones
 - $\circ \quad \tau_{ij} \quad \tau_i | \tau_j \quad \text{or} \quad \tau_{ij} \quad \tau_j | \tau_i \quad \text{(order does not matter)}$

(a) Initial system with tasks τ_i, τ_x et τ_j

(b) System after clustering τ_i with τ_i

- System may become unschedulable after clustering
- \Rightarrow Schedulability must be checked after each non zero-cost clustering!

Cluster model

Valid cluster

Theorem

Let S be a task set and Φ be a priority assignment. Let S' the task set S after clustering of two tasks τ_i and τ_j .

 \mathcal{S}' is schedulable under $\Phi \Rightarrow \mathcal{S}$ is schedulable under $\Phi.$

However, the converse is not always true.

Definition

The clustering is valid iff schedulability is preserved after clustering

Outline

Introduction

Definition

Complexity

Solution

Conclusion

Complexity: a schedulability problem

Reminder:

• sufficient test

- often in linear complexity
- ensures system schedulability
- sub-optimal
- necessary test
 - \circ does not ensure schedulability
- **exact** \Rightarrow sufficient AND necessary test
 - generally NP-hard

In our case, use of sufficient or exact tests to guarantee system correctness

Complexity: and a partitionning problem

Example

Some possible combinations (15 possibilities) of 4 tasks τ_a, τ_b, τ_c et τ_d :

- Combinatorial explosion: number of possible clusterings in the Bell number range (e.g., $B_{500}=10^{844})$

Overall Complexity

- NP-hard: reduced from bin-packing with fragile objects
- Given:
 - \circ a set of bins of **capacity** c_i
 - $\circ\,$ a set of object with a size s_i and a fragility f_i
- Assign objects to a minimum number of bins such that for each bin *j*:

$$\sum s_i \leq c_j$$

- $\sum s_i \leq \min(f_i)$
- Task clustering analogy:
 - $\circ \ \mathsf{bin} \Rightarrow \mathsf{cluster}$
 - $\circ \ \mathsf{object} \Rightarrow \mathsf{task}$
 - $\circ \ \ \mathsf{fragility} \Rightarrow \mathsf{deadline}$

Overall Complexity

- NP-hard: reduced from bin-packing with fragile objects
- Given:
 - \circ a set of bins of **capacity** c_i
 - $\circ\,$ a set of object with a size s_i and a fragility f_i
- Assign objects to a minimum number of bins such that for each bin *j*:

$$\sum s_i \leq c_j$$

- $\sum s_i \leq \min(f_i)$
- Task clustering analogy:
 - $\circ \ \mathsf{bin} \Rightarrow \mathsf{cluster}$
 - $\circ \ \mathsf{object} \Rightarrow \mathsf{task}$
 - $\circ \ \mathsf{fragility} \Rightarrow \mathsf{deadline}$

 \rightarrow Motivates to work towards a heuristic

Outline

Introduction

Definition

Complexity

Solution

Conclusion

Heuristic principles

- Classical optimization techniques are based on cost functions to choose "promising candidates"
 - \Rightarrow Schedulability test used as a cost function. (Applied to greedy BFS, but works for simulated annealing, A*, etc.)
- Perform in priority zero-cost clustering
- Use sufficient test when exact impracticable

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n} \text{ closer to 1 means less margin for the scheduler}).$

• Sustainable unschedulability: a task set deemed unschedulable remains so after clustering \Rightarrow avoid useless search ^{20 de 24}

(A)(B)(C)(D)

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n} \text{ closer to 1 means less margin for the scheduler}).$

ABCD

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n} \text{ closer to 1 means less margin for the scheduler}).$

ABCD

schedulable best schedulable

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D_n}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time R computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler.

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler.

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$ $(\frac{R_n}{D}$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time *R* computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time Rcomputation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time *R* computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time *R* computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time *R* computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time *R* computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

- Idea: Successive clusterings from an initial task set
- Heuristic cost function based on response time *R* computation: $h(S) = \sum_{n=1}^{|S|} \frac{R_n}{D_n}$

 $\left(\frac{R_n}{D_n}\right)$ closer to 1 means less margin for the scheduler).

Results under DM

Results under EDF

Outline

Introduction

Definition

Complexity

Solution

Conclusion

Conclusion

We presented in this talk:

- the task clustering problem,
- its complexity,
- some heuristic principles,
- and a first heuristic.

Current and future work:

- adding precedences between tasks
- then applying task clustering to multi-processor systems