
Minimize the cardinality of a real-time task set
through Task Clustering

Antoine Bertout, Julien Forget and Richard Olejnik
Laboratoire d’Informatique Fondamentale de Lille (LIFL)

Univ. Lille, France
RTNS’2014 Versailles

Outline

Introduction

Definition

Complexity

Solution

Conclusion

2 de 24

Outline

Introduction

Definition

Complexity

Solution

Conclusion

3 de 24

Context

• Focus on hard real-time systems

• Interest in programming of large systems specified as high-level
functionalities

• Up to ≈ 1000 high-level functionalities in RT system
software (e.g. aileron command, read pressure sensor, etc.)

4 de 24

Task Clustering
Problem

• Functionalities implemented via real-time threads (tasks) by
programmers

• RT operating systems (OS) support a limited number of
concurrent threads (several tens of OS tasks)

5 de 24

Task Clustering
RTOS limitations

Having numerous threads:

• Scheduling overhead
◦ Scheduler level: handle large queues
◦ Increase of context switches
⇒ increase the risk of cache misses (larger WCET)

• Memory
◦ Task level: one stack by task
◦ Scheduler level: increase in the number of priorities required
⇒ number of preemption increases
⇒ execution stack grows

→ Several functionalities grouped together in a thread
Manually made in industry (error prone, tedious)

6 de 24

Task Clustering
RTOS limitations

Having numerous threads:

• Scheduling overhead
◦ Scheduler level: handle large queues
◦ Increase of context switches
⇒ increase the risk of cache misses (larger WCET)

• Memory
◦ Task level: one stack by task
◦ Scheduler level: increase in the number of priorities required
⇒ number of preemption increases
⇒ execution stack grows

→ Several functionalities grouped together in a thread
Manually made in industry (error prone, tedious)
6 de 24

Outline

Introduction

Definition

Complexity

Solution

Conclusion

7 de 24

System model used

Program = a set of tasks τi :

Ci

Di

Ci

Di

0

Ti Ti

• Ti : period

• Di : constrained relative deadline
(Di ≤ Ti)

• Ci : worst case execution time
(WCET)

Current limitations: independent and synchronous tasks (offset
= 0) in a uniprocessor system.
Fixed task-priority and fixed-job-priority assignment considered.

8 de 24

Objective

• Automatically grouping functionalities into tasks to minimize
their number:

• while respecting original timing constraints,

• while preserving schedulability.

{ } { } { }, ,, ,

9 de 24

Cluster model

• Cluster τi and τj into τij with Di ≤ Dj

◦ Cij = Ci + Cj

◦ Tij = Ti = Tj (by restriction we only regroup tasks with equal
periods)

◦ Which deadline for the cluster?

10 de 24

Cluster model : Deadline choice for the cluster

• Case 1: Maximum deadline Dj

◦ if (Dj − Cj ≤ Di)
◦ and in that order

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15
=

(b) System after clustering τi with τj

Schedulability preserved ⇒ Zero-cost clustering

11 de 24

Cluster model : Deadline choice for the cluster

• Case 1: Maximum deadline Dj

◦ if (Dj − Cj ≤ Di)
◦ and in that order

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15
=

(b) System after clustering τi with τj

Schedulability preserved ⇒ Zero-cost clustering
11 de 24

Cluster model : Deadline choice for the cluster

• Case 1: Maximum deadline Dj

◦ if (Dj − Cj ≤ Di) or generalizing (Rj − Cj ≤ Di)
◦ and in that order

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15
=

(b) System after clustering τi with τj

Schedulability preserved ⇒ Zero-cost clustering
11 de 24

Cluster model : Deadline choice for the cluster
• Case 2: Minimum deadline Di

◦ Taking minimum deadline ensures respect of both initial ones
◦ or (order does not matter)

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15

=

(b) System after clustering τi with τj
• System may become unschedulable after clustering

⇒ Schedulability must be checked after each non zero-cost
clustering!

12 de 24

Cluster model : Deadline choice for the cluster
• Case 2: Minimum deadline Di

◦ Taking minimum deadline ensures respect of both initial ones
◦ or (order does not matter)

5 10 15

5 10 15

5 10 15

(a) Initial system with tasks τi ,τx et τj

5 10 15

5 10 15

=

(b) System after clustering τi with τj
• System may become unschedulable after clustering
⇒ Schedulability must be checked after each non zero-cost

clustering!
12 de 24

Cluster model
Valid cluster

Theorem
Let S be a task set and Φ be a priority assignment. Let S ′ the
task set S after clustering of two tasks τi and τj .
S ′ is schedulable under Φ ⇒ S is schedulable under Φ.

However, the converse is not always true.

Definition
The clustering is valid iff schedulability is preserved after
clustering

13 de 24

Outline

Introduction

Definition

Complexity

Solution

Conclusion

14 de 24

Complexity: a schedulability problem

Reminder:

• sufficient test
◦ often in linear complexity
◦ ensures system schedulability
◦ sub-optimal

• necessary test
◦ does not ensure schedulability

• exact ⇒ sufficient AND necessary test
◦ generally NP-hard

In our case, use of sufficient or exact tests to guarantee system
correctness

15 de 24

Complexity: and a partitionning problem

Example
Some possible combinations (15 possibilities) of 4 tasks τa, τb, τc et τd :

A
B

C
D

A
B

C
D

A
B

C
D

A
B

C
D

• Combinatorial explosion: number of possible clusterings in
the Bell number range (e.g.,B500 = 10844)

16 de 24

Overall Complexity

• NP-hard: reduced from bin-packing with fragile objects
• Given:
◦ a set of bins of capacity ci
◦ a set of object with a size si and a fragility fi

• Assign objects to a minimum number of bins such that for
each bin j :
◦

∑
si ≤ cj

◦
∑

si ≤ min(fi)

• Task clustering analogy:
◦ bin ⇒ cluster
◦ object ⇒ task
◦ fragility ⇒ deadline

→ Motivates to work towards a heuristic

17 de 24

Overall Complexity

• NP-hard: reduced from bin-packing with fragile objects
• Given:
◦ a set of bins of capacity ci
◦ a set of object with a size si and a fragility fi

• Assign objects to a minimum number of bins such that for
each bin j :
◦

∑
si ≤ cj

◦
∑

si ≤ min(fi)

• Task clustering analogy:
◦ bin ⇒ cluster
◦ object ⇒ task
◦ fragility ⇒ deadline

→ Motivates to work towards a heuristic
17 de 24

Outline

Introduction

Definition

Complexity

Solution

Conclusion

18 de 24

Heuristic principles

• Classical optimization techniques are based on cost functions
to choose “promising candidates”

⇒ Schedulability test used as a cost function.
(Applied to greedy BFS, but works for simulated annealing, A*, etc.)

• Perform in priority zero-cost clustering

• Use sufficient test when exact impracticable

19 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C A B C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA B DA C

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA B DA C

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA B DA C A B D C

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA B DA C A B D C

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

A greedy heuristic

• Idea: Successive clusterings from an initial task set
• Heuristic cost function based on response time R

computation: h(S) =
|S|∑
n=1

Rn

Dn

(Rn

Dn
closer to 1 means less margin for the scheduler).

A B C D

A B C D A B D C

B D CA B DA C A B D C

BA D C A B C D BA C D

unschedulable

schedulable

best schedulable

• Sustainable unschedulability: a task set deemed unschedulable
remains so after clustering ⇒ avoid useless search

20 de 24

Results under DM

0

20

40

60

80

100

50 100 150 200 250 300N
um

b
er

of
ta

sk
s

af
te

r
cl

us
te

ri
ng

Number of tasks

u=0.20
u=0.40
u=0.60
u=0.80

Figure : Task clustering under Deadline Monotonic scheduling
algorithm (u = processor utilization factor)

21 de 24

Results under EDF

0

20

40

60

80

100

60 80 100 120 140 160 180 200N
um

b
er

of
ta

sk
s

af
te

r
cl

us
te

ri
ng

Number of tasks

u=0.20
u=0.40
u=0.60
u=0.80

Figure : Task clustering under EDF scheduling algorithm (u =
processor utilization factor)

22 de 24

Outline

Introduction

Definition

Complexity

Solution

Conclusion

23 de 24

Conclusion

We presented in this talk:

• the task clustering problem,

• its complexity,

• some heuristic principles,

• and a first heuristic.

Current and future work:

• adding precedences between tasks

• then applying task clustering to multi-processor systems

24 de 24

	Introduction
	Definition
	Complexity
	Solution
	Conclusion

