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Problem description

m processors

n sporadic tasks

Global (task level) Fixed-Priority (G-FP) Preemptive Scheduling

Is the taskset schedulable?
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System Model

A sporadic task τis specified by a tuple (C,D,T )

C is the worst-case execution time

D is the relative deadline

T is the minimum time interval between two successive job

releases of the task

T ∼ D with ∼∈ {<,=, >}

Fully Preemptive

Tasks can migrate among different processors

October 8, 2014 5 / 38



Critical instant for G-FP scheduling?

October 8, 2014 6 / 38



Critical instant for G-FP scheduling?

Unknown

October 8, 2014 6 / 38



Critical instant for G-FP scheduling?

Unknown

An example (Baruah, 2007): τ1 = (1, 2, 2), τ2 = (1, 3, 3), and

τ3 = (5, 6, 6)

October 8, 2014 6 / 38



Critical instant for G-FP scheduling?

Unknown

An example (Baruah, 2007): τ1 = (1, 2, 2), τ2 = (1, 3, 3), and

τ3 = (5, 6, 6)

October 8, 2014 6 / 38



State-of-the-art

Analytical (over-approximate) solutions: RTA-CE (Sun et al.,

2014), RTA-LC (Guan et al., 2009)
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State-of-the-art

Analytical (over-approximate) solutions: RTA-CE (Sun et al.,

2014), RTA-LC (Guan et al., 2009)

Model-based (exact) solutions : Geeraerts, Goossens, and

Lindstrom, 2013 and Baker and Cirinei, 2007
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Our contributions

A Linear Hybrid Automaton (LHA) model for exact G-FP

scheduling
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Our contributions

A Linear Hybrid Automaton (LHA) model for exact G-FP

scheduling

A weak simulation relation to simplify the state space exploration

An evaluation on the pessimism of the state-of-the-art analytical

G-FP schedulability analysis
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Linear Hybrid Automata(LHA)

A Linear Hybrid Automaton is a tuple

H = {V ,D, L, init , Lab,T , Invar}
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A Linear Hybrid Automaton is a tuple

H = {V ,D, L, init , Lab,T , Invar}

1 A finite set V = {x1, . . . , xn} of continuous variables.

2 A labeling function D which linearly constrains variables’ rate

(V̇ = {ẋ1, . . . , ẋN}) in each location.

3 A finite set L of locations.

4 An initial function init .

5 A finite set Lab of synchronisation labels.

6 A finite set T of transitions (every location has an outgoing stutter

transition to itself).

7 A labeling function Invar which assigns each location l an

invariant.
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Concrete states and Symbolic States

A concrete state s = (l , ν) : l is a location and ν is a valuation over
V
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Examples

s = (l , v) with

ν = (1.6, 2.3)

x

y

S = (l , C) with

C = {1 ≤ x ≤ 3 ∧ x + y ≤ 4}

x

y
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Task automaton

A task (C,D,T ) is modeled by a LHA called Task Automaton(TA)

Two continuous variables :
1 p : the time passed since the latest task activation
2 c : remaining computation time that needs to be executed
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p ≤ D

arrival
p ≥ T
p := 0
c := C



Task automaton

Idle
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ṗ = 1, ċ = −1
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ṗ = 1, ċ = −1
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Task automaton

Idle
ṗ = 1, ċ = 0

Waiting
ṗ = 1, ċ = 0

p ≤ D

arrival
p ≥ T
p := 0
c := C

Running
ṗ = 1, ċ = −1
c ≥ 0 ∧ p ≤ D

dispatch

preemption
c > 0

end
c = 0

p ≥ T
p := 0

c := c + C

p ≥ T
p := 0

c := c + C

Deadline
Missed

p ≥ D c > 0∧
p ≥ D
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Scheduling Automaton and System Automaton

The Scheduling Automaton(Sched)

It synchronises with TAs and decides which tasks to run and which

tasks to wait.

It is a G-FP preemptive scheduler.

The System Automaton(SA)

Composition of TAs and Sched : Sched × TA1 × · · · × TAn
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The Scheduling Automaton(Sched)

It synchronises with TAs and decides which tasks to run and which

tasks to wait.

It is a G-FP preemptive scheduler.

The System Automaton(SA)

Composition of TAs and Sched : Sched × TA1 × · · · × TAn

The schedulability problem is now the reachability problem of

DeadlineMissed in SA.
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Definition

Definition

A weak simulation relation in concrete state space of SA is a preorder

�⊆ space× space such that :

1 ∀s1, s2, s4 s.t. s1 � s2, s2 → s4 there exists s3 s.t.

s1 ⇒ s3 and s3 � s4.

2 ∀s1, s2 s.t. s1 � s2 :

s2 in DeadlineMissed implies s1 in DeadlineMissed

Whenever s1 � s2, we say that s1 (weak) simulates s2.
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The slack-time pre-order relation �st

Definition

For the SA with a G-FP preemptive scheduler, its slack-time pre-order

relation �st⊆ space× space is defined such that ∀s1, s2, s1 �st s2 iff

∀τi : s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci
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relation �st⊆ space× space is defined such that ∀s1, s2, s1 �st s2 iff

∀τi : s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci

Theorem

�st is indeed a weak simulation relation in SA.
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From space to Space

A symbolic state S = (l , C) abstracts a set of concrete states.

For two symbolic states S1 and S2, we say S1 simulates S2 if

∀s2 ∈ S2 , ∃s1 ∈ S1 s.t . s1 � s2
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A preliminary concept : convex region domination

Assume a N-dimensional space

Given two valuations ν = (ν1, . . . , νN) and ν ′ = (ν ′1, . . . , ν
′
N), we

say ν dominates ν ′, denoted as ν ≥ ν ′, if ∀i ∈ [1,N], νi ≥ ν ′i .
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A preliminary concept : convex region domination

Assume a N-dimensional space

Given two valuations ν = (ν1, . . . , νN) and ν ′ = (ν ′1, . . . , ν
′
N), we

say ν dominates ν ′, denoted as ν ≥ ν ′, if ∀i ∈ [1,N], νi ≥ ν ′i .

Given two convex regions C1 and C2, we say C1 dominates C2,

denoted as C1 ≥ C2, if for any valuation ν ′ in C2, there exists a

valuation ν ∈ C1 such that ν ≥ ν ′.
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�st in Space

Definition

For the SA with a G-FP preemptive scheduler, its slack-time pre-order

relation �st⊆ Space× Space is defined such that ∀S1,S2, S1 �st S2 iff

S1.C dominates S2.C.
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�st in Space

Definition

For the SA with a G-FP preemptive scheduler, its slack-time pre-order

relation �st⊆ Space× Space is defined such that ∀S1,S2, S1 �st S2 iff

S1.C dominates S2.C.

Theorem

�st⊆ Space× Space is a weak simulation relation.
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How to decide C1 ≥ C2?

x

y

C1

C2

October 8, 2014 24 / 38



A widening operator ∇

Given a convex region C

It’s windening region ∇(C) is constructed as follows:
1 Construct linear constraints C′ in 2× N dimensional space

(x1, . . . , xN , y1, . . . , yN) such that

(y1, . . . , yN) |= C ∧ ∀i , xi ≤ yi

2 Remove the space dimensions higher than N in C′.
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An example of widening

x

y

x
+

y
≤

4x ≥ 1

y ≥ 1

C
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Lemma

Lemma

Given two convex regions C1 and C2, C1 ≥ C2 if and only if ∇(C1)
includes ∇(C2).

Proof.
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Schedulability Analysis in System Automaton (SA-SA)

Algorithm 1 Schedulability Analysis in SA (SA-SA)

1: R ← {S0}
2: while true do

3: P ← Post(R)
4: if P ∩ F 6= ∅ then

5: return NOT schedulable

6: end if

7: R′ ← R ∪ P

8: R′ ← Max�(R′)
9: if R′ = R then

10: return schedulable

11: else

12: R ← R′

13: end if

14: end while
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SA-SA vs. RTA-CE

RTA-CE : Response Time Analysis with Carry-in Enumeration

(Sun et al., 2014)
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SA-SA vs. RTA-CE

RTA-CE : Response Time Analysis with Carry-in Enumeration

(Sun et al., 2014)

m ∈ {2, 3} and n = 5

Ti ∈ [100, 1000] and a series of taskset utilisation levels U

seperated by 0.1

For each (m, n,U) configuration 100 tasksets are generated by

Randomfixedsum (Emberson et al., 2010)
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Results I: m = 2, n = 5, Di

Ti
∈ [0.8, 1]
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Results II: m = 2, n = 5, Di

Ti
∈ [0.8, 1.2]
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Results IV: m = 3, n = 5, Di

Ti
∈ [0.8, 1]
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SA-SA vs. SA-SA-WOS

SA-SA-WOS: SA-SA WithOut Simulation

m = 2, n = 5, Di
Ti
∈ [0.8, 1], and U ∈ [1, 1.6]

100 task sets
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Results
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SA-SA: another experiment on complexity

m = 2, n = 6, Di
Ti
∈ [0.8, 2], and U ∈ [1, 2]

50 task sets
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Results
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Questions?
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