Exact Schedulability Analysis of Global Fixed Priority Scheduling by Using Linear Hybrid Automata

Youcheng Sun¹, Giuseppe Lipari^{1 2}

¹Scuola Superiore Sant'Anna

²LSV - ENS Cachan and CNRS

October 8, 2014

Introduction

2 LHA models for multiprocessor G-FP scheduling

3 Weak Simulation Relation

- Concrete state space
- Symbolic state space

Experiments

Introduction

2 LHA models for multiprocessor G-FP scheduling

Weak Simulation Relation

- Concrete state space
- Symbolic state space

Experiments

- *m* processors
- n sporadic tasks
- Global (task level) Fixed-Priority (G-FP) Preemptive Scheduling

- *m* processors
- n sporadic tasks
- Global (task level) Fixed-Priority (G-FP) Preemptive Scheduling
- Is the taskset schedulable?

• A sporadic task τ_i s specified by a tuple (C, D, T)

- C is the worst-case execution time
- D is the relative deadline
- *T* is the minimum time interval between two successive job releases of the task
- *T* ∼ *D* with ∼∈ {<,=,>}
- Fully Preemptive
- Tasks can migrate among different processors

Unknown

- Unknown
- An example (Baruah, 2007): $\tau_1 = (1, 2, 2), \tau_2 = (1, 3, 3)$, and $\tau_3 = (5, 6, 6)$

- Unknown
- An example (Baruah, 2007): $\tau_1 = (1, 2, 2), \tau_2 = (1, 3, 3)$, and $\tau_3 = (5, 6, 6)$

Analytical (over-approximate) solutions: RTA-CE (Sun et al., 2014), RTA-LC (Guan et al., 2009)

- Analytical (over-approximate) solutions: RTA-CE (Sun et al., 2014), RTA-LC (Guan et al., 2009)
- Model-based (exact) solutions : Geeraerts, Goossens, and Lindstrom, 2013 and Baker and Cirinei, 2007

A Linear Hybrid Automaton (LHA) model for exact G-FP scheduling

- A Linear Hybrid Automaton (LHA) model for exact G-FP scheduling
- A weak simulation relation to simplify the state space exploration

- A Linear Hybrid Automaton (LHA) model for exact G-FP scheduling
- A weak simulation relation to simplify the state space exploration
- An evaluation on the pessimism of the state-of-the-art analytical G-FP schedulability analysis

Linear Hybrid Automata(LHA)

A Linear Hybrid Automaton is a tuple

 $H = \{V, D, L, init, Lab, T, Invar\}$

Linear Hybrid Automata(LHA)

A Linear Hybrid Automaton is a tuple

 $H = \{V, D, L, init, Lab, T, Invar\}$

- A finite set $V = \{x_1, \ldots, x_n\}$ of continuous variables.
- A labeling function *D* which linearly constrains variables' rate $(\dot{V} = {\dot{x}_1, ..., \dot{x}_N})$ in each location.

Linear Hybrid Automata(LHA)

A Linear Hybrid Automaton is a tuple

 $H = \{V, D, L, init, Lab, T, Invar\}$

- A finite set $V = \{x_1, \ldots, x_n\}$ of continuous variables.
- A labeling function *D* which linearly constrains variables' rate $(\dot{V} = {\dot{x}_1, ..., \dot{x}_N})$ in each location.
- A finite set L of locations.
- An initial function *init*.
- A finite set *Lab* of synchronisation labels.
- A finite set T of transitions (every location has an outgoing stutter transition to itself).
- A labeling function *Invar* which assigns each location *I* an *invariant*.

A concrete state s = (I, ν) : I is a location and ν is a valuation over V

- A concrete state s = (I, ν) : I is a location and ν is a valuation over V
 - A transition $s_1 \rightarrow s_2$; a sequence of transitions $s_1 \Rightarrow s_2$
 - The concrete state space of LHA : space

- A concrete state s = (I, ν) : I is a location and ν is a valuation over V
 - A transition $s_1 \rightarrow s_2$; a sequence of transitions $s_1 \Rightarrow s_2$
 - The concrete state space of LHA : space
- A symbolic state *S* = (*I*,*C*) : *I* is a location and *C* is a linear constraint and can be represented by a convex region

- A concrete state s = (I, ν) : I is a location and ν is a valuation over V
 - A transition $s_1 \rightarrow s_2$; a sequence of transitions $s_1 \Rightarrow s_2$
 - The concrete state space of LHA : space
- A symbolic state S = (I, C): *I* is a location and *C* is a linear constraint and can be represented by a convex region
 - A transition $S_1 \rightarrow S_2$; a sequence of transitions $S_1 \Rightarrow S_2$
 - The symbolic state space of LHA : Space

Examples

Examples

s = (I, v) with $\nu = (1.6, 2.3)$ тY Х

Examples

Introduction

LHA models for multiprocessor G-FP scheduling

Weak Simulation Relation

- Concrete state space
- Symbolic state space

Experiments

A task (C, D, T) is modeled by a LHA called Task Automaton(TA)

- Two continuous variables :
 - p : the time passed since the latest task activation
 - c : remaining computation time that needs to be executed

• The Scheduling Automaton(Sched)

- It synchronises with TAs and decides which tasks to run and which tasks to wait.
- It is a G-FP preemptive scheduler.
- The System Automaton(SA)
 - Composition of TAs and Sched : Sched \times TA₁ $\times \cdots \times$ TA_n

• The Scheduling Automaton(Sched)

- It synchronises with TAs and decides which tasks to run and which tasks to wait.
- It is a G-FP preemptive scheduler.
- The System Automaton(SA)
 - Composition of TAs and Sched : Sched \times TA₁ $\times \cdots \times$ TA_n
- The schedulability problem is now the reachability problem of DeadlineMissed in SA.

Introduction

2 LHA models for multiprocessor G-FP scheduling

Weak Simulation Relation

- Concrete state space
- Symbolic state space

Experiments

Introduction

2 LHA models for multiprocessor G-FP scheduling

Symbolic state space

Experiments

A weak simulation relation in concrete state space of SA is a preorder $\succeq \subseteq$ space \times space such that :

 \bigcirc $\forall s_1, s_2, s_4$ s.t. $s_1 \succeq s_2, s_2 \rightarrow s_4$ there exists s_3 s.t.

 $s_1 \Rightarrow s_3$ and $s_3 \succeq s_4$.

 $(\textbf{3} \forall s_1, s_2 \text{ s.t. } s_1 \succeq s_2 :$

 s_2 in DeadlineMissed implies s_1 in DeadlineMissed

Whenever $s_1 \succeq s_2$, we say that s_1 (weak) simulates s_2 .

For the SA with a G-FP preemptive scheduler, its slack-time pre-order relation $\succeq_{st} \subseteq$ space \times space is defined such that $\forall s_1, s_2, s_1 \succeq_{st} s_2$ iff

 $\forall \tau_i : s_1.p_i \geq s_2.p_i \land s_1.c_i \geq s_2.c_i$

For the SA with a G-FP preemptive scheduler, its slack-time pre-order relation $\succeq_{st} \subseteq$ space \times space is defined such that $\forall s_1, s_2, s_1 \succeq_{st} s_2$ iff

$$\forall \tau_i : s_1.p_i \geq s_2.p_i \land s_1.c_i \geq s_2.c_i$$

Theorem

 \succeq_{st} is indeed a weak simulation relation in SA.

Introduction

2 LHA models for multiprocessor G-FP scheduling

Weak Simulation Relation Concrete state space

Symbolic state space

Experiments

- A symbolic state S = (I, C) abstracts a set of concrete states.
- For two symbolic states S_1 and S_2 , we say S_1 simulates S_2 if

$$\forall s_2 \in S_2 , \exists s_1 \in S_1 \quad s.t. \quad s_1 \succeq s_2$$

- Assume a N-dimensional space
- Given two valuations ν = (ν₁,..., ν_N) and ν' = (ν'₁,..., ν'_N), we say ν dominates ν', denoted as ν ≥ ν', if ∀i ∈ [1, N], ν_i ≥ ν'_i.

- Assume a N-dimensional space
- Given two valuations ν = (ν₁,..., ν_N) and ν' = (ν'₁,..., ν'_N), we say ν dominates ν', denoted as ν ≥ ν', if ∀i ∈ [1, N], ν_i ≥ ν'_i.
- Given two convex regions C₁ and C₂, we say C₁ dominates C₂, denoted as C₁ ≥ C₂, if for any valuation ν' in C₂, there exists a valuation ν ∈ C₁ such that ν ≥ ν'.

For the SA with a G-FP preemptive scheduler, its slack-time pre-order relation $\succeq_{st} \subseteq$ Space \times Space is defined such that $\forall S_1, S_2, S_1 \succeq_{st} S_2$ iff $S_1.C$ dominates $S_2.C$.

For the SA with a G-FP preemptive scheduler, its slack-time pre-order relation $\succeq_{st} \subseteq$ Space \times Space is defined such that $\forall S_1, S_2, S_1 \succeq_{st} S_2$ iff $S_1.C$ dominates $S_2.C$.

Theorem

 $\succeq_{st} \subseteq$ Space \times Space *is a weak simulation relation.*

How to decide $C_1 \ge C_2$?

- Given a convex region ${\mathcal C}$
- It's windening region $\nabla(\mathcal{C})$ is constructed as follows:
 - Construct linear constraints C' in 2 × N dimensional space $(x_1, \ldots, x_N, y_1, \ldots, y_N)$ such that

$$(y_1,\ldots,y_N)\models \mathcal{C} \quad \land \quad \forall i, \ x_i\leq y_i$$

2 Remove the space dimensions higher than N in C'.

An example of widening

An example of widening

Lemma

Given two convex regions C_1 and C_2 , $C_1 \ge C_2$ if and only if $\nabla(C_1)$ includes $\nabla(C_2)$.

Proof.

Schedulability Analysis in System Automaton (SA-SA)

Algorithm 1 Schedulability Analysis in SA (SA-SA)

- 1: $R \leftarrow \{S_0\}$
- 2: while true do
- 3: $P \leftarrow \mathsf{Post}(R)$
- 4: if $P \cap F \neq \emptyset$ then
- 5: return NOT schedulable
- 6: end if
- 7: $R' \leftarrow R \cup P$
- 8: $R' \leftarrow \operatorname{Max}^{\succeq}(R')$
- 9: if R' = R then
- 10: return schedulable
- 11: **else**
- 12: $R \leftarrow R'$
- 13: end if
- 14: end while

Introduction

2 LHA models for multiprocessor G-FP scheduling

Weak Simulation Relation

- Concrete state space
- Symbolic state space

Experiments

• RTA-CE : Response Time Analysis with Carry-in Enumeration (Sun et al., 2014)

- RTA-CE : Response Time Analysis with Carry-in Enumeration (Sun et al., 2014)
- $m \in \{2,3\}$ and n = 5
- *T_i* ∈ [100, 1000] and a series of taskset utilisation levels *U* seperated by 0.1
- For each (*m*, *n*, *U*) configuration 100 tasksets are generated by Randomfixedsum (Emberson et al., 2010)

Results I: $m = 2, n = 5, \frac{D_i}{T_i} \in [0.8, 1]$

Results II: $m = 2, n = 5, \frac{D_i}{T_i} \in [0.8, 1.2]$

Results IV: $m = 3, n = 5, \frac{D_i}{T_i} \in [0.8, 1]$

October 8, 2014 33 / 38

- SA-SA-WOS: SA-SA WithOut Simulation
- $m = 2, n = 5, \frac{D_i}{T_i} \in [0.8, 1], \text{ and } U \in [1, 1.6]$
- 100 task sets

Results

•
$$m = 2, n = 6, \frac{D_i}{T_i} \in [0.8, 2], \text{ and } U \in [1, 2]$$

50 task sets

Questions?