The Boot Process in Real-time Manycore Processors

Florian Kluge, Mike Gerdes, Theo Ungerer

Department of Computer Science
University of Augsburg
Germany

RTNS 2014
October 8th, 2014

1/18

Manycore Processors

e Upcoming: Manycore processors for real-time
domains I:' I:' |:|
e Kalray MPPA-256, Adapteva Epiphany |:| |:| I:I

e Cores connected by Network-on-Chip

e Memory local to cores or clusters |:| |:| I:I

e Opportunities for real-time domains:

e Complex Algorithms
— Decrease fuel consumption
— New safety features

2/18

Challenge: Time-Predictability of Software

e Typically considered: regular operation

e Assumes initialisation finished
e Initialisation phase may be non-real-time!

e What about boot strapping?

e Cold boot: loose constraints
e Restart during operation due to fail-states, watchdog?
e Fail-stop sometimes not possible

— Bound blackout times!

3/18

Real-time Boot Process

e Boot process:
e Each core needs memory image of code and data

e Memory image: kernel + application image
e Worst-case delay (WCD):

Power-on/ All applications
Restart event ready
1 WCD 0
I 1
t

e Assumptions:

e One core CO has access to ROM
e CO coordinates boot process

e How should boot process be organised?
e Find a time bound for the WCD of the boot process!

418

Motivation

Target Platform
Boostrapping Approaches
Evaluation

Summary and Future Work

5/18

Target Platform

Node

| Network Interface |

|

Local Memory

|

D Node

Router

NoC Interconnect

 Only few cores can access off-chip facilities (e.g. ROM, 1/0)

o Communication based completely on explicitly sent messages

6/ 18

Full Image (FI)

e One separate image for each core

e Contains kernel + core-specific
application

e Everything loaded from ROM by CO

E B =
= B &
[Rom| [cd [] []

App. 2

App. 1

Kernel

el

718

Full Image (FI)

e One separate image for each core

e Contains kernel + core-specific
application

e Everything loaded from ROM by CO

E B &
= B &

RoM—@] [

App. 2

App. 1

Kernel

el

718

Full Image (FI)

e One separate image for each core Abbs 2

e Contains kernel + core-specific
application App. 1 el
e Everything loaded from ROM by CO

Kernel

H =
1 0 O
Mynn

)
©)
<
L]
)
|

718

Full Image (FI)

e One separate image for each core

e Contains kernel + core-specific
application

e Everything loaded from ROM by CO

E B =
L1 & E
o [[

App. 2

App. 1

Kernel

el

718

Full Image (FI)

e One separate image for each core Apol 2

e Contains kernel + core-specific
application App. 1 el
e Everything loaded from ROM by CO

Kernel

718

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | 3
sends to all cores i PP EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

E B E
= B E
[Rom] e [] []

8/ 18

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | 3
sends to all cores i PP EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

E B E
= B E
[Rom] o~ [

8/ 18

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | 3
sends to all cores i PP EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

E B E
= B E
[Rom] [=]

8/ 18

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | !
sends to all cores i PP: EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

8/ 18

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | 3
sends to all cores i PP EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

O OO
OO0 8
[Rom]..[ed—1 [

8/ 18

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | 3
sends to all cores i PP EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

]]
]]

0l [@ [

8/ 18

Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | !
sends to all cores i PP: EI

e Application image like in Fl

,,,,,,,,,,,,,,,,,,

8/ 18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

E B =
E B =
[Rom] [cd [] []

9/18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

E B =
0 8 =
[Rom] el [] [}

9/18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

= O
= O
[Rom] (e~ []

9/18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

E B =
=8 =
[Rom] [[1]

9/18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

= 8 0
E 80
[Rom]. /e [

9/18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

0l @ [

]]
]]

9/18

Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI

9/18

Evaluation Methodology

e Abstract simulation of bootstrapping steps

e Sequential execution
e Communication between cores

e Assume worst-case timing for any step
e Abstract cores finish simulation at times wy, ..., w,

— Worst-Case Delay:

WCD = max{wi,...,wp}

10/ 18

MWSim Scripts

o Sequential execution for ¢ cycles: exec ¢
— ¢ retrieved with OTAWA

Loading n bytes from ROM: load n
— w = nlrom, Irom via OTAWA and ROM timing

Waiting for a message
— w depends on arrival time of message

Sending/receiving messages
— w via OTAWA, message size, and network interface timing

foreach-loop
— w: WCL of subprogram for each loop execution

Wait for same message type from several cores: parwait
— w: WCL of subprogram for each loop execution plus waiting times

11/ 18

Script Execution
@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

N[Pl T[T |
N\

N1 []] A\ |
A\

N2 []] \ |

N3 []] \

(exec] [Load] [sond] [E86H)

12 /18

Script Execution
@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

No [] |l |

\ _
N1 [] i [|
\

N2 7] \ |
\
N3 []] |

(exec] [Load] [sond] [E86H)

12 /18

Script Execution
@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

L0] A | |

N1 [] [] / |

N2 [] | | |

N3 []] |

(exec] [1oaa] [sena) (269

12 /18

Script Execution

@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

/ / /
N1 [] |
N2 [] |
N3 [|

[ovec] [Tosa] [sona) [EoEH]

12 /18

Script Execution

@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

N DT T T [|
\ /. /S 7
N1 [] [] /S /

/S /

N2 [] [] / |
/

N3 [[| |

[ovec] [Tosa] [sona) [EoEH]

12 /18

Script Execution

@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

No [] [[| |
\ /I/./
[| /]
/]

N1 ||

N2 [] [] / |
/

N3 [[| |

[ovec] [Tosa] [sona) [EoEH]

12 /18

Script Execution

@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

No [] [{IH/]I//]I/II

N1 ||

N2 [] [] / |
/

N3 [[| |

[ovec] [Tosa] [sona) [EoEH]

12 /18

Script Execution

@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages

no (I I =R
N [-

N2 [] I —w
N3 [] | ——

WCD‘:WO
[fod] [send] [£EEH

| W

—

12 /18

Evaluation Scenario

Approaches implemented in MOSSCA

e Manycore Operating System for Safety-Critical Applications
e Research platform
e Runs on manycore simulator

Coordination performed by core 0

Core Architecture: ARMv7, ARM Thumb ISA
Mesh real-time NoC with fixed traversal times
Chip sizes: 2x2 - 8x8, 16x16, 32x32 cores

13 /18

Worst-Case Durations

Normalised to FlI

I Fl—SI—SDh

08! . | |

0.6 |

Normalised WCET

0.2 B

I I I I I I I I I
2x2 3x3 4x4 5x5 6x6 7x7 8x816x182x32
#Cores

14 /18

Worst-Case Durations

Values

’ Cores ‘ Fl Sl ‘ SD
2x2 770,900 694,171 686,010
3x3 1,884,712 1,589,378 1,508,050
4x4 3,580,181 2,975,200 2,750,241
5x5 7,024,712 6,026,258 5,250,923
6x6 12,921,407 11,445,768 9,472,063
<7 23,118,166 21,200,584 16,810,684
8x8 39,674,211 37,493,774 28,834,226
16x16 968,858,078 093,482,216 705,480,325
32x32 | 30,732,373,725 | 31,871,846,984 | 22,554,961,381

15 / 18

Experienced Durations
8x8 System

. +FI<SleSD
-10
T T
4+ + o

x +++
n e
)
% 3/ e efﬁ e
o il °
g +++’ ° N
= 2 | +++ ® ® o
Z N ++& o L]
)

°
§ 1 °+++++. o ° e °
3 e & o e
o o e
.+++ T 4 ..
0 | []
| | | |
0 20 40 60

16 / 18

Summary

e WCD analysis of manycore boot process

e Abstract simulation
e MWSim Tool

e Three bootstrapping approaches

o Full Image (FI)
o Split Image (SI)
¢ Self-Distributing kernel (SD)

e Results

e SD up to 27% faster than Fl
e Large chips: Sl can be slower than Fl

17 /18

Future Work

Use DMA units for data transfer

Extend analysis to other manycore architectures
— Clusters of cores with cluster-memories

Investigate usage of best-effort NoC
— may reduce WCDs by two orders of magnitude

Prioritisation of some nodes/applications, give guarantees to single
nodes

18 /18

	Motivation
	Target Platform
	Boostrapping Approaches
	Evaluation
	Summary and Future Work

