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Manycore Processors

e Upcoming: Manycore processors for real-time
domains I:' I:' |:|
e Kalray MPPA-256, Adapteva Epiphany |:| |:| I:I

e Cores connected by Network-on-Chip

e Memory local to cores or clusters |:| |:| I:I

e Opportunities for real-time domains:

e Complex Algorithms
— Decrease fuel consumption
— New safety features
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Challenge: Time-Predictability of Software

e Typically considered: regular operation

e Assumes initialisation finished
e Initialisation phase may be non-real-time!

e What about boot strapping?

e Cold boot: loose constraints
e Restart during operation due to fail-states, watchdog?
e Fail-stop sometimes not possible

— Bound blackout times!
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Real-time Boot Process

e Boot process:
e Each core needs memory image of code and data

e Memory image: kernel + application image
e Worst-case delay (WCD):

Power-on/ All applications
Restart event ready
1 WCD 0
I 1
t

e Assumptions:

e One core CO has access to ROM
e CO coordinates boot process

e How should boot process be organised?
e Find a time bound for the WCD of the boot process!

418



Motivation

Target Platform
Boostrapping Approaches
Evaluation

Summary and Future Work

5/18



Target Platform

Node
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 Only few cores can access off-chip facilities (e.g. ROM, 1/0)

o Communication based completely on explicitly sent messages

6/ 18



Full Image (FI)

e One separate image for each core

e Contains kernel + core-specific
application

e Everything loaded from ROM by CO

E B =
= B &
[Rom| [cd [] []

App. 2

App. 1

Kernel

el

718



Full Image (FI)

e One separate image for each core

e Contains kernel + core-specific
application

e Everything loaded from ROM by CO

E B &
= B &

RoM—@ ] [

App. 2

App. 1

Kernel

el

718



Full Image (FI)

e One separate image for each core Abbs 2

e Contains kernel + core-specific
application App. 1 el
e Everything loaded from ROM by CO

Kernel

H =
1 0 O
Mynn

)
©)
<
L]
)
|

718



Full Image (FI)

e One separate image for each core

e Contains kernel + core-specific
application

e Everything loaded from ROM by CO

E B =
L1 & E
o [ [

App. 2

App. 1

Kernel

el

718



Full Image (FI)

e One separate image for each core Apol 2

e Contains kernel + core-specific
application App. 1 el
e Everything loaded from ROM by CO

Kernel

718



Split Image (SI)

e Image split into generic kernel + App. 2

core-specific application

e CO loads kernel only once from ROM, A 1 | 3
sends to all cores i PP EI

e Application image like in Fl
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Self-Distributing Kernel

e Image split into generic kernel + . ‘

core-specific application | :
p PP | aep2 |

e CO loads kernel only once from ROM,

sends to some cores f

. g . | Aep 1 el

e Starting kernel distributes itself to other 1
cores ; |
e Application image like in FI/SI
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Evaluation Methodology

e Abstract simulation of bootstrapping steps

e Sequential execution
e Communication between cores

e Assume worst-case timing for any step
e Abstract cores finish simulation at times wy, ..., w,

— Worst-Case Delay:

WCD = max{wi,...,wp}
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MWSim Scripts

o Sequential execution for ¢ cycles: exec ¢
— ¢ retrieved with OTAWA

Loading n bytes from ROM: load n
— w = nlrom, Irom via OTAWA and ROM timing

Waiting for a message
— w depends on arrival time of message

Sending/receiving messages
— w via OTAWA, message size, and network interface timing

foreach-loop
— w: WCL of subprogram for each loop execution

Wait for same message type from several cores: parwait
— w: WCL of subprogram for each loop execution plus waiting times
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Script Execution
@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
@ Continue with 2. until no more messages
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Script Execution

@ Each core executed until waiting point (wait/parwait)

@ Deliver message with earliest arrival time
© Execute receiver until next waiting point/end of script
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Evaluation Scenario

Approaches implemented in MOSSCA

e Manycore Operating System for Safety-Critical Applications
e Research platform
e Runs on manycore simulator

Coordination performed by core 0

Core Architecture: ARMv7, ARM Thumb ISA
Mesh real-time NoC with fixed traversal times
Chip sizes: 2x2 - 8x8, 16x16, 32x32 cores
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Worst-Case Durations

Normalised to FlI
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Worst-Case Durations

Values

’ Cores ‘ Fl Sl ‘ SD
2x2 770,900 694,171 686,010
3x3 1,884,712 1,589,378 1,508,050
4x4 3,580,181 2,975,200 2,750,241
5x5 7,024,712 6,026,258 5,250,923
6x6 12,921,407 11,445,768 9,472,063
<7 23,118,166 21,200,584 16,810,684
8x8 39,674,211 37,493,774 28,834,226
16x16 968,858,078 093,482,216 705,480,325
32x32 | 30,732,373,725 | 31,871,846,984 | 22,554,961,381
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Experienced Durations
8x8 System
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Summary

e WCD analysis of manycore boot process

e Abstract simulation
e MWSim Tool

e Three bootstrapping approaches

o Full Image (FI)
o Split Image (SI)
¢ Self-Distributing kernel (SD)

e Results

e SD up to 27% faster than Fl
e Large chips: Sl can be slower than Fl
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Future Work

Use DMA units for data transfer

Extend analysis to other manycore architectures
— Clusters of cores with cluster-memories

Investigate usage of best-effort NoC
— may reduce WCDs by two orders of magnitude

Prioritisation of some nodes/applications, give guarantees to single
nodes
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