
The Boot Process in Real-time Manycore Processors

Florian Kluge, Mike Gerdes, Theo Ungerer

Department of Computer Science
University of Augsburg

Germany

RTNS 2014
October 8th, 2014

1 / 18



Manycore Processors

• Upcoming: Manycore processors for real-time
domains

• Kalray MPPA-256, Adapteva Epiphany
• Cores connected by Network-on-Chip
• Memory local to cores or clusters

• Opportunities for real-time domains:
• Complex Algorithms

→ Decrease fuel consumption
→ New safety features

2 / 18



Challenge: Time-Predictability of Software

• Typically considered: regular operation
• Assumes initialisation finished
• Initialisation phase may be non-real-time!

• What about boot strapping?
• Cold boot: loose constraints
• Restart during operation due to fail-states, watchdog?
• Fail-stop sometimes not possible

→ Bound blackout times!

3 / 18



Real-time Boot Process

• Boot process:
• Each core needs memory image of code and data
• Memory image: kernel + application image
• Worst-case delay (WCD):

t

Power-on/
Restart event

All applications
ready

WCD

• Assumptions:
• One core C0 has access to ROM
• C0 coordinates boot process

• How should boot process be organised?

• Find a time bound for the WCD of the boot process!

4 / 18



Overview

Motivation

Target Platform

Boostrapping Approaches

Evaluation

Summary and Future Work

5 / 18



Target Platform

Node

I/O Connection

Core

Local Memory

Network Interface

Node Router NoC Interconnect

• Only few cores can access off-chip facilities (e.g. ROM, I/O)

• Communication based completely on explicitly sent messages

6 / 18



Full Image (FI)

• One separate image for each core

• Contains kernel + core-specific
application

• Everything loaded from ROM by C0

Kernel

App. 2

Kernel

App. 1

C0ROM

7 / 18



Full Image (FI)

• One separate image for each core

• Contains kernel + core-specific
application

• Everything loaded from ROM by C0

Kernel

App. 2

Kernel

App. 1

C0ROM

7 / 18



Full Image (FI)

• One separate image for each core

• Contains kernel + core-specific
application

• Everything loaded from ROM by C0

Kernel

App. 2

Kernel

App. 1

C0ROM

7 / 18



Full Image (FI)

• One separate image for each core

• Contains kernel + core-specific
application

• Everything loaded from ROM by C0

Kernel

App. 2

Kernel

App. 1

C0ROM

7 / 18



Full Image (FI)

• One separate image for each core

• Contains kernel + core-specific
application

• Everything loaded from ROM by C0

Kernel

App. 2

Kernel

App. 1

C0ROM

7 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Split Image (SI)

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to all cores

• Application image like in FI

Kernel

App. 2

Kernel

App. 1

C0ROM

8 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Self-Distributing Kernel

• Image split into generic kernel +
core-specific application

• C0 loads kernel only once from ROM,
sends to some cores

• Starting kernel distributes itself to other
cores

• Application image like in FI/SI

Kernel

App. 2

Kernel

App. 1

C0ROM

9 / 18



Evaluation Methodology

• Abstract simulation of bootstrapping steps
• Sequential execution
• Communication between cores

• Assume worst-case timing for any step

• Abstract cores finish simulation at times w1, . . . ,wn

→ Worst-Case Delay:

WCD = max{w1, . . . ,wn}

10 / 18



MWSim Scripts

• Sequential execution for c cycles: exec c

→ c retrieved with OTAWA

• Loading n bytes from ROM: load n

→ w = nlROM , lROM via OTAWA and ROM timing

• Waiting for a message

→ w depends on arrival time of message

• Sending/receiving messages

→ w via OTAWA, message size, and network interface timing

• foreach-loop

→ w : WCL of subprogram for each loop execution

• Wait for same message type from several cores: parwait

→ w : WCL of subprogram for each loop execution plus waiting times

11 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

12 / 18



Script Execution

1 Each core executed until waiting point (wait/parwait)

2 Deliver message with earliest arrival time
3 Execute receiver until next waiting point/end of script
4 Continue with 2. until no more messages

N0

N1

N2

N3

exec load send recv wait

w0

w1

w2

w3

WCD = w0

12 / 18



Evaluation Scenario

• Approaches implemented in MOSSCA
• Manycore Operating System for Safety-Critical Applications
• Research platform
• Runs on manycore simulator

• Coordination performed by core 0

• Core Architecture: ARMv7, ARM Thumb ISA

• Mesh real-time NoC with fixed traversal times

• Chip sizes: 2x2 - 8x8, 16x16, 32x32 cores

13 / 18



Worst-Case Durations
Normalised to FI

2x2 3x3 4x4 5x5 6x6 7x7 8x816x1632x32
0

0.2

0.4

0.6

0.8

1

#Cores

N
or

m
al

is
ed

W
C

E
T

FI SI SD

14 / 18



Worst-Case Durations
Values

Cores FI SI SD

2x2 770,900 694,171 686,010

3x3 1,884,712 1,589,378 1,508,050

4x4 3,580,181 2,975,200 2,750,241

5x5 7,024,712 6,026,258 5,250,923

6x6 12,921,407 11,445,768 9,472,063

7x7 23,118,166 21,200,584 16,810,684

8x8 39,674,211 37,493,774 28,834,226

16x16 968,858,078 993,482,216 705,480,325

32x32 30,732,373,725 31,871,846,984 22,554,961,381

15 / 18



Experienced Durations
8x8 System

0 20 40 60

0

1

2

3

4

·107

Core

E
xe

cu
ti

on
ti

m
e

(c
yc

le
s)

FI SI SD

16 / 18



Summary

• WCD analysis of manycore boot process
• Abstract simulation
• MWSim Tool

• Three bootstrapping approaches
• Full Image (FI)
• Split Image (SI)
• Self-Distributing kernel (SD)

• Results
• SD up to 27% faster than FI
• Large chips: SI can be slower than FI

17 / 18



Future Work

• Use DMA units for data transfer

• Extend analysis to other manycore architectures

→ Clusters of cores with cluster-memories

• Investigate usage of best-effort NoC

→ may reduce WCDs by two orders of magnitude

• Prioritisation of some nodes/applications, give guarantees to single
nodes

18 / 18


	Motivation
	Target Platform
	Boostrapping Approaches
	Evaluation
	Summary and Future Work

