
Supporting Global Resource Sharing in RUN-scheduled
Multiprocessor Systems

L.Bonato, E.Mezzetti, T.Vardanega
University of Padua, Department of Mathematics

RTNS 2014, October 8-10

sharing resources with RUN RTNS 2014 1 / 24

Introduction

Our goal

Goal
Extend RUN (Reduction to UNiprocessor) scheduling algorithm to
not-independent tasks

Why RUN?
optimal multiprocessor scheduling algorithm
RUN uses servers, and servers can be convenient: logical packing vs
feasibility packing

sharing resources with RUN RTNS 2014 2 / 24

Introduction

Are servers convenient when sharing resources?

assuming a platform with 2 processors...

sharing resources with RUN RTNS 2014 3 / 24

Introduction

Our contribution

SBLP (Server Based Locking Protocol): a locking protocol for RUN.
“servers” as building block for isolating collaborative tasks: avoid
bin-packing problem

collaborative tasks
We define two tasks to be collaborative if they belong to the same transitive
closure formed on the relationship of sharing at least one common resource

sharing resources with RUN RTNS 2014 4 / 24

How RUN+SBLP works

RUN: the reduction tree

tasks (Tj) the
starting point
packed server (Si)
groups several
tasks/servers
together in a
uniprocessor-like
fashion
dual server (S∗

i)
represent the idle
time of a packed
server

sharing resources with RUN RTNS 2014 5 / 24

How RUN+SBLP works

RUN executing

Scheduling decision propagates
from the root to the leaves. E.g.:

1 Root does not execute (no
budget)

2 S∗
5 does not execute

because its parent does not
3 S5 executes because its

dual does not
4 S∗

1 executes because client
of S5 with earliest deadline

5 S1 does not execute
because its dual does

6 T1 and T2 do not execute
because S1 does not

sharing resources with RUN RTNS 2014 6 / 24

How RUN+SBLP works

RUN executing

...and budgets are consumed
during execution...

sharing resources with RUN RTNS 2014 7 / 24

How RUN+SBLP works

RUN executing

...and when budgets are ex-
hausted, per-server EDF ta-
kes care to execute some other
client...

sharing resources with RUN RTNS 2014 8 / 24

How RUN+SBLP works

RUN executing

...and so on...

sharing resources with RUN RTNS 2014 9 / 24

How RUN+SBLP works

RUN executing

...until budgets are repleni-
shed when servers hit their
deadlines

sharing resources with RUN RTNS 2014 10 / 24

How RUN+SBLP works

RUN+SBLP executing

...now assume tasks T3, T4,
T5 and T6 share the same
resource

sharing resources with RUN RTNS 2014 11 / 24

How RUN+SBLP works

RUN+SBLP executing

booking the resource

start spinning

some time before 12 both T3
and T4 request the resource

T4 locks the resource
T3 finds the resource
locked and books the
resource (appends in
resource’s FIFO queue)
since the lock holder is
executing, T3 starts
spinning while waiting
for the resource to be
released

sharing resources with RUN RTNS 2014 12 / 24

How RUN+SBLP works

RUN+SBLP executing

booking the resource

a scheduling decision preemp-
ts T3 and T4.
When T5 executes and try
to lock the already locked
resource:

books the resource
lends its processor to S3
whose tasks is holding
the resource

sharing resources with RUN RTNS 2014 13 / 24

How RUN+SBLP works

RUN+SBLP executing

helping the lock holder

T5 does not spin because the
lock holder is not already exe-
cuting, but it lets execute
T4

resource released asap:
no task wastes cpu-time
by spinning if the
holding task is not
making any progress

sharing resources with RUN RTNS 2014 14 / 24

How RUN+SBLP works

RUN+SBLP executing

helping the lock holder

...and since requests must
be served in FIFO order, T3
becomes the new lock holder

sharing resources with RUN RTNS 2014 15 / 24

How RUN+SBLP works

RUN+SBLP executing

WCET must account for spinning
and helping mechanism

normal budget depletion budgets are consumed as if
S4 would never let other level-
0 servers execute. Increase
WCET of tasks to consider:

spinning
execution of critical
section of tasks being
helped

sharing resources with RUN RTNS 2014 16 / 24

How RUN+SBLP works

RUN+SBLP executing

locking the resource

...T5 uses the resource and
completes before its deadline.
Since the resource is free, T6
can lock it.

sharing resources with RUN RTNS 2014 17 / 24

How RUN+SBLP works

RUN+SBLP executing

Then a scheduling decision of
RUN lets S2 and S3 execute...

sharing resources with RUN RTNS 2014 18 / 24

How RUN+SBLP works

RUN+SBLP executing

...since T3 and T4 already
used and released the resour-
ce, it’s just normal execution
and budget consumption.

sharing resources with RUN RTNS 2014 19 / 24

How RUN+SBLP works

RUN+SBLP executing

per-server
non-preemptive region

When S4 must execute, it
executes T6 instead of T5

each request is a
per-server
non-preemptive region

Idea - collaborative tasks will
use the same resource: let’s
avoid unneeded preemptions

sharing resources with RUN RTNS 2014 20 / 24

How RUN+SBLP works

RUN+SBLP executing

server’s budget must account
for the delay due to np sections

...but the delay suffered from
the tasks in the same server
must be considered. To meet
the deadlines of tasks

increase budget of
servers containing
collaborative tasks

sharing resources with RUN RTNS 2014 21 / 24

How RUN+SBLP works

RUN+SBLP executing

...and in the meanwhile, T1
and T2 (which were not using
the resource) executed, com-
pleted and met their deadlines
without any interference!

sharing resources with RUN RTNS 2014 22 / 24

Experiments

Implementation

SBLP implemented in the plugin of RUN for LITMUSRT

non-invasive for kernel primitives
high impact on runtime preemptions and migrations

I preemptions/migrations may be needed by the helping mechanism
I height of reduction tree is increased (⇒ more preemptions/migrations)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6

a
v
e
ra

g
e
 t

re
e
 l
e
v
e
l

system utilization (m=8)

RUN
RUN+SBLP, 50% collaborative tasks
RUN+SBLP, 65% collaborative tasks
RUN+SBLP, 80% collaborative tasks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6

a
v
e
ra

g
e
 c

u
m

u
la

ti
v
e
 p

re
e
m

p
ti

o
n
s

system utilization (m=8)

RUN
RUN+SBLP, 50% collaborative tasks
RUN+SBLP, 65% collaborative tasks
RUN+SBLP, 80% collaborative tasks

sharing resources with RUN RTNS 2014 23 / 24

The end

Conclusions

+ RUN can be used with resource-sharing tasks
+ Servers can be useful to overcome the limitations of partitioning while

dealing with resources: reduced parallelism and ad-hoc packing
− Increased runtime overhead

sharing resources with RUN RTNS 2014 24 / 24

SBLP extensions

Multiple resources?

What happens if tasks use several shared resources?
protocol does not change
highlights the limit of statically defined servers for collaborative tasks:
decrease parallelism or decrease delay caused by unrelated resources?

sharing resources with RUN RTNS 2014 25 / 24

SBLP extensions

Grouping strategies

parallelism = 1
delay = max

parallelism = 1 or 2
delay = min or max

parallelism = 2
delay = min

sharing resources with RUN RTNS 2014 26 / 24

SBLP extensions

Parallelism and delays

System utilization is increased by two distinct amounts:
1 increased WCET of tasks: related to the number of parallel requests
2 increased budget of servers: related to the length of non-preemptive

critical section
Which quantity is likely to affect the most the increased system utilization?

sharing resources with RUN RTNS 2014 27 / 24

SBLP extensions

Schedulability simulations

Simulations using two packing heuristics for collaborative tasks
coarse-grained: to reduce the length of FIFO queue of resources
fine-grained: to avoid blocking caused by unrelated resources

⇒ less servers is (generally) better!

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100

d
e
m

a
n
d
 a

u
g
m

e
n
ta

ti
o
n
 f

a
ct

o
r

% collaborative tasks

fine-grained packing
coarse-grained packing

sharing resources with RUN RTNS 2014 28 / 24

SBLP extensions

Nested resources?

Nested resources can be used. How to avoid deadlock?
Ordered access
Group lock
Partial group lock: using group lock only for nesting tasks (or better,
all nesting tasks in the same server)

sharing resources with RUN RTNS 2014 29 / 24

	Introduction
	How RUN+SBLP works
	Experiments
	The end
	SBLP extensions

