
 1

Lossy Compression for Worst-
Case Execution Time Analysis
of PLRU Caches

David Griffin, Benjamin Lesage
Alan Burns, Rob Davis

 2

Introduction

 Traditional Abstract Interpretation
approach
 Identify a value that is interesting
 Find an approximation of that value
 Define map between concrete /

abstract states

 3

Introduction

 Problems
 No guarantee that an interesting value

is a useful value
 No guarantee approximation doesn't

discard important information

 4

Lossy Compression

 Lossy Compression is the art of choosing
to lose information of little value to the
goal
 Example: MP3 compression discards

audio data that would be impossible to
hear

 Caveat: Not typically applied to state
spaces...

 5

Lossy Compression

 Effectively, Lossy Compression is already
used in Abstract Interpretation
 Takes big state space, makes it smaller

by discarding/approximating
information

 However, it is not explicitly mentioned or
used...

 6

Lossy Compression

 Lossy Compression approach
 Write down the different types of

information in the system
 Experiment/Reason about what would

happen if each type were
discarded/approximated

 Discard Information from states until
state space is of a manageable size

 7

PLRU Cache

 PLRU cache is commonly used
 “nearly” as good as LRU
 Less expensive to implement

 Based on a binary tree
 Uses much smaller silicon area

 8

PLRU Cache

 9

PLRU Cache

 10

PLRU Cache

 11

PLRU Cache

 Algorithm
if classify(cs, memloc) == Miss:
evict(cs, memloc)

touch(cs, memloc)

 Nearly always behaves like LRU

 12

PLRU Cache

 “Nearly Always” is a problem for WCET
 Corner cases where PLRU behaves very

differently to LRU
 Element kept in cache that hasn't been

accessed
 Elements evicted quicker than in LRU

 13

Memory Block
Protection
 If a is accessed,

it's shared pointer
with b is set away

 If a is repeatedly
accessed, b is
never evicted

 14

Speedy Eviction

 log(n) pointers
protect any single
element

 So an element can
be evicted in
log(n) + 1
accesses
 If these are the

right accesses

 15

Current Techniques

 Grunde & Reineke's Potential Leading
Zeroes approach
 Gives a (partial) Must analysis
 No May analysis

 Collecting Semantics
 Expensive for large problems

 16

Collecting Semantics

 Some cache states have the same
behaviour

 17

Collecting Semantics

 A behaviour can be “named” by flipping
all pointers to a fixed direction

 Value of information lost: 0

 18

Information in PLRU
Cache State
 3 Types of Information

 Cache Lines
 Tree Structure
 Pointers

 3 Operations in algorithm
 Classify, Evict, Touch

 19

Information Inside
Cache States
 Classify

 Determines if Eviction should happen
 Uses Cache Lines as input
 If uncertain, would have to consider

both the possibilities of performing an
eviction or not performing an eviction

 20

Information Inside
Cache States
 Evict

 Follows pointers and replaces
the pointed at element with a
new element

 Uses Pointers and Tree structure
as input; Overwrites Cache Lines

 If Pointer/Tree Structure
uncertain, could have to
consider each element of cache
being evicted

 21

Information Inside
Cache States
 Touch

 Sets all pointers on path to
cache line away

 Uses Tree Structure as input;
Overwrites Pointers

 If Tree Structure uncertain,
could have to consider cache
element in any position

 22

Information Inside
Cache States
 Every cache access will perform Classify

and Touch
 But not every access will perform Evict

 When optimised for cache, expect >
90% hit rate

 23

Information Inside
Cache States

Usage Freq Overwrite Freq Worst case
uncertainty

Cache Lines High Low 2 (2n)

Pointers Low High n

Tree Structure High High n

 So Pointers are used infrequently and
overwritten frequently
 Good candidate tor discarding

 24

Revisiting Behaviour
Naming
 As pointers may now be unknown, need

to revisit how behaviours are named
 Instead of flipping trees based on

pointer, do so based on cache lines and
tree structure

 Accomplished by a recursive sort

 25

Revisiting Behaviour
Naming

 26

Revisiting Behaviour
Naming

 27

Revisiting Behaviour
Naming

 28

Revisiting Behaviour
Naming

 This new name is the cache signature

 29

Full Tree Analysis

 Merge all cache states with the same
signature

 If Pointers differ, set conflicting Pointers
to be (Unknown)⟂

⟂

 30

Full Tree Analysis

 When encountering an unknown pointer,
consider both possibilities

⟂

 31

Full Tree Analysis

 To perform classification, classify on each
state being considered
 If a Must in all states, Must overall
 If a Must in some states, May overall
 If a Must in no states, Miss overall

 32

Evaluation

 Must analysis evaluated against Grund
and Reineke's PLRU-plz analysis [17]

 Must/May analysis evaluated against
Collecting Semantics

 33

Evaluation

 Synthetic Benchmarks from Grund and
Reineke [17]

 Loop(n): Loop of n different memory
accesses, repeated 16 times

 Random(n): 100 random memory
accesses from range 1..n

 34

Evaluation

 35

Evaluation

plz cannot analyse these

 36

Evaluation

ft achieves
almost the
same results
as cs

 37

Evaluation

 38

Evaluation

ft is faster
than cs

 39

Evaluation

 40

Evaluation

Similar results,
but May analysis
is more
pessimistic

 41

Evaluation

 42

Evaluation

 Mälardalen + PapaBench
 Compiled for MIPS
 Interrogated by Heptane analyser
 Multipath, but no path constraints

 8-way cache, 32 byte line size
 256 byte cache

 PLRU-plz was unable to analyse these
benchmarks due to memory usage

 43

Evaluation

 44

Evaluation

Similar
accuracy on
'real'
benchmarks

 45

Evaluation

 46

Evaluation

Normally faster

 47

Evaluation

Normally faster

… but not on smaller benchmarks

 48

Evaluation

 49

Evaluation

Good
accuracy on
larger
benchmarks

 50

Evaluation

Good
accuracy on
larger
benchmarks

… but more
pessimistic
on shorter
ones

 51

Evaluation

 52

Evaluation

Faster on
bigger
benchmarks

 53

Evaluation

Faster on
bigger
benchmarks

… but slower
on shorter
ones.

 54

Evaluation

Faster on
bigger
benchmarks

… but slower
on shorter
ones.

Pessimism = Slow

 55

Conclusion

 Full Tree analysis is able to provide
a fast and accurate PLRU cache
analysis

 Lossy Compression can be useful in
deriving an abstraction for use in
abstract interpretation
 (Not just for PLRU caches – see talk

tomorrow on Random Replacement Caches)

 56

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

