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Introduction

 Traditional Abstract Interpretation 
approach
 Identify a value that is interesting
 Find an approximation of that value
 Define map between concrete / 

abstract states
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Introduction

 Problems
 No guarantee that an interesting value 

is a useful value
 No guarantee approximation doesn't 

discard important information
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Lossy Compression

 Lossy Compression is the art of choosing 
to lose information of little value to the 
goal
 Example: MP3 compression discards 

audio data that would be impossible to 
hear

 Caveat: Not typically applied to state 
spaces...
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Lossy Compression

 Effectively, Lossy Compression is already 
used in Abstract Interpretation
 Takes big state space, makes it smaller 

by discarding/approximating 
information

 However, it is not explicitly mentioned or 
used...
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Lossy Compression

 Lossy Compression approach
 Write down the different types of 

information in the system
 Experiment/Reason about what would 

happen if each type were 
discarded/approximated

 Discard Information from states until 
state space is of a manageable size
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PLRU Cache

 PLRU cache is commonly used
 “nearly” as good as LRU
 Less expensive to implement

 Based on a binary tree
 Uses much smaller silicon area
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PLRU Cache
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PLRU Cache
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PLRU Cache
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PLRU Cache

 Algorithm 
if classify(cs, memloc) == Miss:
evict(cs, memloc)

touch(cs, memloc)

 Nearly always behaves like LRU
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PLRU Cache

 “Nearly Always” is a problem for WCET
 Corner cases where PLRU behaves very 

differently to LRU
 Element kept in cache that hasn't been 

accessed
 Elements evicted quicker than in LRU
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Memory Block 
Protection
 If a is accessed, 

it's shared pointer 
with b is set away

 If a is repeatedly 
accessed, b is 
never evicted
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Speedy Eviction

 log(n) pointers 
protect any single 
element

 So an element can 
be evicted in 
log(n) + 1 
accesses
 If these are the 

right accesses
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Current Techniques

 Grunde & Reineke's Potential Leading 
Zeroes approach
 Gives a (partial) Must analysis
 No May analysis

 Collecting Semantics
 Expensive for large problems
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Collecting Semantics

 Some cache states have the same 
behaviour
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Collecting Semantics

 A behaviour can be “named” by flipping 
all pointers to a fixed direction

 Value of information lost: 0
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Information in PLRU 
Cache State
 3 Types of Information

 Cache Lines
 Tree Structure
 Pointers

 3 Operations in algorithm
 Classify, Evict, Touch
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Information Inside 
Cache States
 Classify

 Determines if Eviction should happen
 Uses Cache Lines as input
 If uncertain, would have to consider 

both the possibilities of performing an 
eviction or not performing an eviction
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Information Inside 
Cache States
 Evict

 Follows pointers and replaces 
the pointed at element with a 
new element

 Uses Pointers and Tree structure 
as input; Overwrites Cache Lines

 If Pointer/Tree Structure 
uncertain, could have to 
consider each element of cache 
being evicted
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Information Inside 
Cache States
 Touch

 Sets all pointers on path to 
cache line away

 Uses Tree Structure as input; 
Overwrites Pointers

 If Tree Structure uncertain, 
could have to consider cache 
element in any position
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Information Inside 
Cache States
 Every cache access will perform Classify 

and Touch
 But not every access will perform Evict

 When optimised for cache, expect > 
90% hit rate
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Information Inside 
Cache States

Usage Freq Overwrite Freq Worst case 
uncertainty

Cache Lines High Low 2 (2n)

Pointers Low High n

Tree Structure High High n

 So Pointers are used infrequently and 
overwritten frequently
 Good candidate tor discarding
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Revisiting Behaviour 
Naming
 As pointers may now be unknown, need 

to revisit how behaviours are named
 Instead of flipping trees based on 

pointer, do so based on cache lines and 
tree structure

 Accomplished by a recursive sort
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Revisiting Behaviour 
Naming
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Revisiting Behaviour 
Naming
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Revisiting Behaviour 
Naming
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Revisiting Behaviour 
Naming

 This new name is the cache signature
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Full Tree Analysis

 Merge all cache states with the same 
signature

 If Pointers differ, set conflicting Pointers 
to be  (Unknown)⟂

⟂
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Full Tree Analysis

 When encountering an unknown pointer, 
consider both possibilities

⟂
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Full Tree Analysis

 To perform classification, classify on each 
state being considered
 If a Must in all states, Must overall
 If a Must in some states, May overall
 If a Must in no states, Miss overall
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Evaluation

 Must analysis evaluated against Grund 
and Reineke's PLRU-plz analysis [17]

 Must/May analysis evaluated against 
Collecting Semantics
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Evaluation

 Synthetic Benchmarks from Grund and 
Reineke [17]

 Loop(n): Loop of n different memory 
accesses, repeated 16 times

 Random(n): 100 random memory 
accesses from range 1..n
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Evaluation
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Evaluation

plz cannot analyse these 
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Evaluation

ft achieves
almost the
same results
as cs
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Evaluation
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Evaluation

ft is faster
than cs
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Evaluation
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Evaluation

Similar results,
but May analysis
is more 
pessimistic
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Evaluation



 42

Evaluation

 Mälardalen + PapaBench
 Compiled for MIPS
 Interrogated by Heptane analyser
 Multipath, but no path constraints

 8-way cache, 32 byte line size
 256 byte cache

 PLRU-plz was unable to analyse these 
benchmarks due to memory usage 
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Evaluation
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Evaluation

Similar 
accuracy on 
'real' 
benchmarks
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Evaluation
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Evaluation

Normally faster
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Evaluation

Normally faster

… but not on smaller benchmarks
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Evaluation



 49

Evaluation

Good 
accuracy on 
larger 
benchmarks
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Evaluation

Good 
accuracy on 
larger 
benchmarks

… but more 
pessimistic 
on shorter 
ones
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Evaluation
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Evaluation

Faster on 
bigger 
benchmarks



 53

Evaluation

Faster on 
bigger 
benchmarks

… but slower 
on shorter 
ones.
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Evaluation

Faster on 
bigger 
benchmarks

… but slower 
on shorter 
ones.

Pessimism = Slow
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Conclusion

 Full Tree analysis is able to provide 
a fast and accurate PLRU cache 
analysis

 Lossy Compression can be useful in 
deriving an abstraction for use in 
abstract interpretation
 (Not just for PLRU caches – see talk 

tomorrow on Random Replacement Caches)



 56

Any Questions?
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