
Limited-Preemption
Scheduling on

Multiprocessors
Bipasa Chattopadhyay Sanjoy Baruah

Department of Computer Science
The University of North Carolina at Chapel Hill

1

Outline
• Motivation

• Task Model

• Our Contribution

• Application to Multi-GPU systems

• Experimental Evaluation

• Summary

2

Motivation

3

Fully-preemptive Non-preemptive

Schedulability Better schedulability
Higher priority jobs
may be blocked by
lower priority jobs

WCET and Run-time
overheads

Larger and harder to
determine

The system model is
closer to the real

system

Access to shared
resources

(multiprocessors)

Non-trivial
synchronization
protocols needed

Synchronization
protocols are simpler to

implement

Limited-preemption scheduling is an alternative to fully-
preemptive scheduling and non-preemptive scheduling

In limited-preemption scheduling a job executes
preemptively until it needs to execute non-preemptively

4

Limited-Preemption Sporadic Task Model

time
Di <= Ti

• Each task 𝜏i is characterized by four parameters:
• Ci - preemptive worst-case execution time
• Li - non-preemptive worst-case execution time
• Ti - minimum inter-arrival separation (period)
• Di - deadline (implicit or constrained)

• Utilization, Ui = (Ci+Li)/Ti
• A task set 𝜏, consists of n tasks

Deadline

Arrival
Ci + Li

Schedulability Test
• In this work we propose a schedulability test for limited-preemption

sporadic task sets on m identical processors under Global Earliest
Deadline First (GEDF)

• Prior work*: A schedulability test has been proposed for fully-preemptive
sporadic task sets 𝜏, 𝜏i ={Ci, Ti, Di}, on m identical processors under
GEDF

• The analysis is based on computing the total execution demand of all
jobs over a certain interval t

• Our Contribution: Extension to limited-preemption sporadic task sets 𝜏,
𝜏i= {Ci, Li, Ti, Di}

• We compute the maximum blocking a job can experience over a certain
interval t due to the non-preemptive execution of lower-priority jobs

5*S. Baruah, “Techniques for Multiprocessor Global Schedulability Analysis”, RTSS 2007

Properties

• Pseudo-polynomial time for all task sets for which total
utilization is bounded by a constant strictly less than m

• Sufficient and necessary for uniprocessors

• Sufficient for multiprocessors

• Sustainable with respect to all parameters;{Ci, Li, Ti, Di}

6

Application to Multi-GPU Systems
• Recent work has been done towards incorporating GPUs

(Graphical Processing Units) as a shared processing unit
in real-time systems

• Multi-GPU system model:

• m identical CPUs and g identical GPUs

• Each task 𝜏i may execute on the CPU and GPU.
Consider that a task makes a single request to a GPU,
and may execute on the GPU for a total of Gi time units

• On GPUs execution is non-preemptive

7

• When a job executes non-preemptively on a GPU, the
job busy-waits non-preemptively on a CPU. Other
options: suspension, busy-wait preemptively

!

!

• A synchronization approach* is used to access GPUs

• For the given synchronization approach, given values of
g and m, and Gi, for each task 𝜏i, we compute Li (worst-
case non-preemptive busy-waiting) for use in our
schedulability test

8
 * A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible real-time locking

protocol for multiprocessors,” RTCSA 2007

J1 busy-waits non-preemptively on the CPU, therefore J2 must wait to execute

J1

J1

J2
a1 a2 d2 d1 timeCPU

GPU

J1

Experimental Evaluation
• Schedulability experiments: randomly generated task sets and

determined the percentage of task sets that are schedulable
under the proposed schedulability test

• Compared schedulability under different platform
configurations:

• Limited-preemption + Multi-GPU system with g = m (LPE)

• Limited-preemption + Multi-GPU system with g = m/2
(LPL)

• Full-preemption with g = 0 (FP)

9

10

• For each total effective utilization,1000 sets each with n
effective utilization values {u1…un}, were generated using
the UUnifast-Discard algorithm

• For a set of n effective utilization values, {u1…un}, 3
corresponding task sets were generated

m = 4, n = 40, SP = 30

LPE: g = m

FP: g = 0

LPL: g = m/2

1000 sets with total
effective utilization = 2

Results
• LPE has better schedulability than FP for higher values

of total effective utilization

• LPE has significantly better schedulability than LPL

• For the same total effective utilization:

• for smaller values of SP, the length of Li increases and
schedulability decreases

• for smaller values of n, schedulability in all 3 cases
decreases. However, the trends observed in the graphs
are consistent

11

Summary

• We proposed a schedulability test for limited-preemption
scheduling under GEDF

• Applied the schedulability test to a Multi-GPU system
model with non-preemptive busy-waiting

• Performed schedulability experiments and compared
schedulability under different platform configurations

12

Thank you!

13

• For a set of n effective utilization
values, {
sets were generated with the following
task parameters:

!
• FP: g = 0

• Ti
1000]

• Di
• Gi

on the GPU)
• Ci
• Li
!

• LPE: g = m
• gi
• Gi
• Ci
• Li

!
• LPL: g = m/2

• Li

m = 4, n = 40, SP = 30

LPE: g = m

FP: g = 0

LPL: g = m/2

