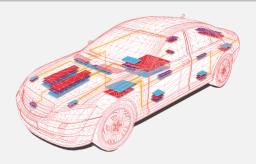
# Real-time Ethernet Residual Bus Simulation: A Model-Based Testing Approach for the Next-Generation In-Car Network

Florian Bartols Till Steinbach Franz Korf Bettina Buth
Thomas C. Schmidt

Hamburg University of Applied Sciences florian.bartols@haw-hamburg.de

October 10th, 2014 22nd International Conference on Real-Time Networks and Systems








SPONSORED BY THE

### Software and functions in modern cars



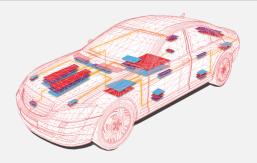


RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

RT Ethernet RBS


IVI Ethernet IVD5

Application & Results

- Functions are implemented mostly in software today
- Utilization of software directly influences the development costs
- Testing in early development stages reduces these costs
- Distributed development makes early testing difficult

#### Software and functions in modern cars



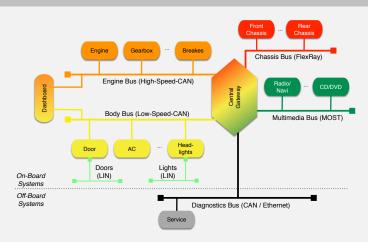


RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Ü


RT Ethernet RBS

Application & Results

- Functions are implemented mostly in software today
- Utilization of software directly influences the development costs
- Testing in early development stages reduces these costs
- Distributed development makes early testing difficult

## **Complex In-Car Interconnections**





RT-Ethernet Residual

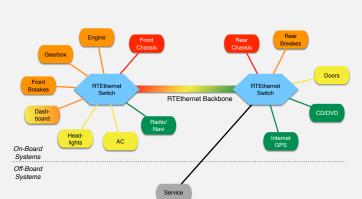
F. Bartols

Motivation & Introduction

ackground

RT Ethernet RBS

Application & Results


Conclusion & Outlook

■ The complexity of current in-car interconnections is hardly manageable



## **Complex In-Car Interconnections**





RT-Ethernet Residual

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

 RT Ethernet for in-car interconnection reduces the complexity



#### Contribution



 Testing systems and applications in early development stages is important

 New applications will rely on RT Ethernet as communication technology

Suitable methodology is needed to validate distributed applications

■ RT Ethernet *Residual Bus Simulation* enables early testing

 Combination of model-based testing principles to validate non-functional requirements RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Daving, Jama

RT Ethernet RBS

Application & Results



#### Contribution



 Testing systems and applications in early development stages is important

 New applications will rely on RT Ethernet as communication technology

 Suitable methodology is needed to validate distributed applications

■ RT Ethernet *Residual Bus Simulation* enables early testing

 Combination of model-based testing principles to validate non-functional requirements RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

----6-----

RT Ethernet RBS

Application & Results

# **Agenda**



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

metasion & Outlook

- 1 Motivation & Introduction
- 2 Background
- 3 Real-time Ethernet Residual Bus Simulation

Hamburg University of Applied Sciences

- 4 Application & Results
- 5 Conclusion & Outlook

# Model-based Testing Approach

Models are utilized as specifications for

 Representing implementation details Modeling system requirements

Execution of cases on different test platforms

■ Test cases are systematically inherited from models

■ MiL, SiL, PiL, HiL and Residual Bus Simulation



RT-Ethernet Residual **Bus Simulation** 

F. Bartols

Motivation &

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Hamburg University of Applied Sciences

■ The automotive development process is model driven

Background

## Model-based Testing Approach



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

- The automotive development process is model driven
- Models are utilized as specifications for
  - Representing implementation details
  - Modeling system requirements
- Test cases are systematically inherited from models
- Execution of cases on different test platforms
  - MiL, SiL, PiL, HiL and Residual Bus Simulation



#### Residual Bus Simulation



RT-Ethernet Residual Bus Simulation

F. Bartols

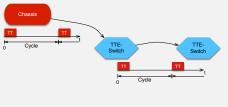
Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook


 The remaining network is simulated from the viewpoint of the SUT

- SUT and simulator are coupled via the communication interface
- Behavior and network specific characteristics are realistically emulated
- The simulator pretends to be a physical system

Attributes of TTEthernet



■ TTEthernet provides three different message classes



Time-Triggered Message

- Static designed routing for deterministic behavior
- Synchronized time base for time-triggered communication

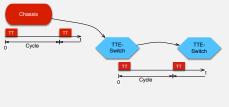
RT-Ethernet Residual

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS


Application & Results



Attributes of TTEthernet



■ TTEthernet provides three different message classes



Time-Triggered Message

- Synchronized time base for time-triggered
- Static designed routing for deterministic behavior

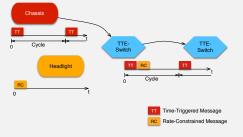
RT-Ethernet Residual **Bus Simulation** 

F. Bartols

Motivation &

Background

RT Ethernet RBS


Application & Results



Attributes of TTEthernet



■ TTEthernet provides three different message classes



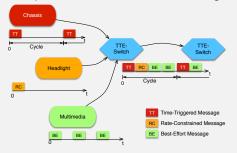
- Static designed routing for deterministic behavior
- Synchronized time base for time-triggered communication

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background


RT Ethernet RBS

Application & Results

Attributes of TTEthernet



■ TTEthernet provides three different message classes



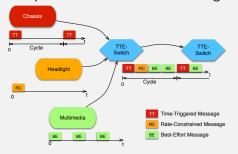
- Static designed routing for deterministic behavior
- Synchronized time base for time-triggered communication

RT-Ethernet Residual

F. Bartols

Motivation & Introduction

Background


RT Ethernet RBS

Application & Results

Attributes of TTEthernet



■ TTEthernet provides three different message classes



- Static designed routing for deterministic behavior
- Synchronized time base for time-triggered communication

RT-Ethernet Residual

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

# **Agenda**



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

- 1 Motivation & Introduction
- 2 Background
- 3 Real-time Ethernet Residual Bus Simulation
- 4 Application & Results
- 5 Conclusion & Outlook

# Model-based Methodology Overview





F. Bartols

Motivation & Introduction

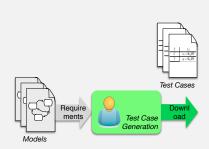
Background

RT Ethernet RBS

Application & Results
Conclusion & Outlook

- Requirements are modeled within suitable diagrams
- Test cases are inherited from the diagrams
- Test cases are executed on a suitable residual bus simulation platform




Require

ments

Models

# Model-based Methodology



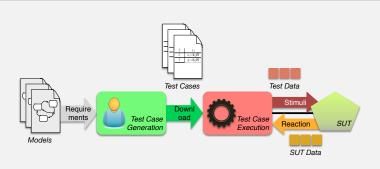


RT-Ethernet Residual

F. Bartols

Motivation & Introduction

Dackgroui


RT Ethernet RBS

Application & Results

- Requirements are modeled within suitable diagrams
- Test cases are inherited from the diagrams
- Test cases are executed on a suitable residual bus simulation platform

# Model-based Methodology





RT-Ethernet Residual

F. Bartols

Motivation & Introduction

Ü

RT Ethernet RBS

Application & Results

- Requirements are modeled within suitable diagrams
- Test cases are inherited from the diagrams
- Test cases are executed on a suitable residual bus simulation platform

# Modeling System Requirements



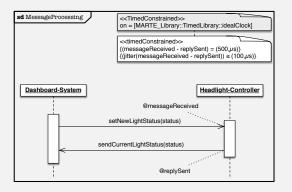
- Classic UML is not sufficient for embedded Real-time Systems
- Utilization of UML-Profile Modeling and Analysis of Real-time Embedded Systems (MARTE)

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

RT Ethernet RBS


I Linemet RDS

Application & Results

# Modeling System Requirements



- Classic UML is not sufficient for embedded Real-time Systems
- Utilization of UML-Profile Modeling and Analysis of Real-time Embedded Systems (MARTE)



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

#### **Abstract Test Cases**

#### Definition







- $\blacksquare ATC_{FR} = (T, U, Y)$
- Modeling specific values of inputs and outputs at specific points in time

Extending the Model

- $ATC_{NFR} = (T, U, Y, L, R, \Delta_L, \Delta_R)$
- Extending with reply time (latency) & transmission rate (rate)

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

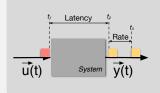
Dackground

RT Ethernet RBS

Application & Results

#### **Abstract Test Cases**

#### **Definition**








- $\blacksquare ATC_{FR} = (T, U, Y)$
- Modeling specific values of inputs and outputs at specific points in time

#### Extending the Model



- $ATC_{NFR} = (T, U, Y, L, R, \Delta_L, \Delta_R)$
- Extending with reply time (latency) & transmission rate (rate)

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results



# Abstract Test Cases Utilization



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

васкground

 $\mathsf{RT}\ \mathsf{Ethernet}\ \mathsf{RBS}$ 

Application & Results

Conclusion & Outlook

Abstract representation of to be generated test data

- Modeling functional requirements with expected output
- Modeling non-functional requirements with expected timing constraints
- Utilization as simulation model to drive the simulator

Requirements and Architecture



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

KT Ethernet RD5

Application & Results

Conclusion & Outlook

#### Requirements

- TTEthernet compliant message transmission
- Support of timing analyzes
- Execution of the abstract test case model



Requirements and Architecture



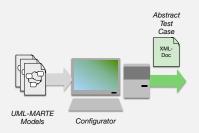
#### RT-Ethernet Residual **Bus Simulation**

F. Bartols

Motivation &

Background

#### RT Ethernet RBS


Application & Results

Conclusion & Outlook



#### Requirements

- TTEthernet compliant message transmission
- Support of timing analyzes
- Execution of the abstract test case model



Requirements and Architecture

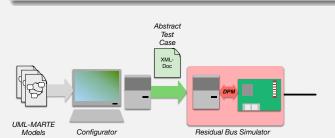
■ Support of timing analyzes

Requirements



RT-Ethernet Residual Bus Simulation

F. Bartols


Motivation & Introduction

Background

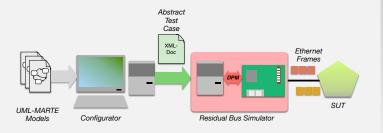
RT Ethernet RBS

Application & Results

Conclusion & Outlook



■ TTEthernet compliant message transmission


Execution of the abstract test case model

Requirements and Architecture



# Requirements

- TTEthernet compliant message transmission
- Support of timing analyzes
- Execution of the abstract test case model



#### RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

#### RT Ethernet RBS

Application & Results

# **Agenda**

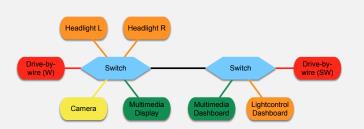


RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background RT Ethernet RBS


Application & Results

Application & Results

- 1 Motivation & Introduction
- 2 Background
- 3 Real-time Ethernet Residual Bus Simulation
- 4 Application & Results
- 5 Conclusion & Outlook

# Overview of the physical system





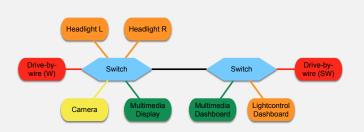
RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

RT Ethernet RBS

Application & Results


Application & Results

- Light control dashboard transmits new light states
- Headlights reply each received light state and
- Periodically provide their current light state
- Light control dashboard presents the light state to the user



# Overview of the physical system



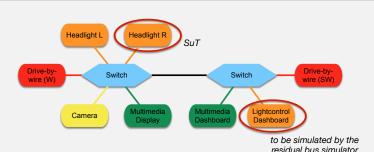


RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

RT Ethernet RBS


Application & Results

Application & Nesults

- Light control dashboard transmits new light states
- Headlights reply each received light state and
- Periodically provide their current light state
- Light control dashboard presents the light state to the user

# Overview of the physical system

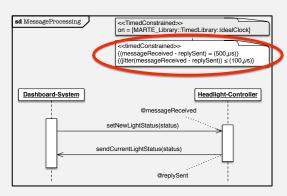




RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction


RT Ethernet RBS

Application & Results

- Light control dashboard transmits new light states
- Headlights reply each received light state and
- Periodically provide their current light state
- Light control dashboard presents the light state to the user

Requirement Modelling with UML-MARTE





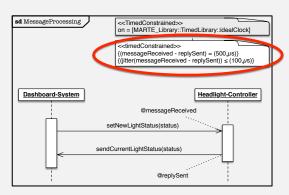
RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

RT Ethernet RBS

KT Ethernet KB5


Application & Results

- Timing requirements of the reply message
  - Latency: 500 μs
  - Jitter: ± 50 μs



Requirement Modelling with UML-MARTE





RT-Ethernet Residual Bus Simulation

F. Bartols

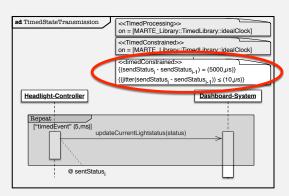
Motivation & Introduction

RT Ethernet RBS

Application & Results

Application & Result

Conclusion & Outlook


■ Timing requirements of the reply message

Latency: 500 μsJitter: ± 50 μs



Requirement Modelling with UML-MARTE





RT-Ethernet Residual Bus Simulation

F. Bartols

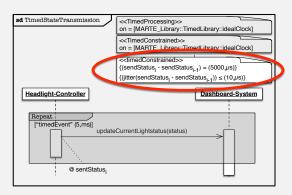
Motivation & Introduction

Duckground

RT Ethernet RBS

Application & Results

Conclusion & Outlook


■ Timing requirements of the message transmission

Rate: 5000 μsJitter: ± 5 μs



Requirement Modelling with UML-MARTE





RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

эаскугоипа

RT Ethernet RBS

Application & Results

Conclusion & Outlook

■ Timing requirements of the message transmission

Rate: 5000 μs
 Jitter: ± 5 μs





| Т          | 1 s                                                                                | 2 s                   | 5 s                     | 7 s            | 9 s                     | 11 s           |
|------------|------------------------------------------------------------------------------------|-----------------------|-------------------------|----------------|-------------------------|----------------|
| U          | $u_1 = HL_OFF$                                                                     | $u_1 = \text{LED\_0}$ | $u_1 = \text{LED\_100}$ | $u_1 = LED_50$ | $u_1 = \text{LED\_101}$ | $u_1 = LED_75$ |
| Y          | $y_1 = HL_0FF$                                                                     | $y_1 = LED_0$         | $y_1 = LED_100$         | $y_1 = LED_50$ | $y_1 = LED_50$          | $y_1 = LED_75$ |
| $Y_{act}$  | $y_1 = HL_0FF$                                                                     | $y_1 = HL_0FF$        | $y_1 = HL_0FF$          | $y_1 = HL_0FF$ | $y_1 = HL_0FF$          | $y_1 = HL_OFF$ |
| L          | $l_1(u_1, y_1) = 500 \mu\text{s}$                                                  |                       |                         |                |                         |                |
| $\Delta_L$ | $j_{L1}(I_1) \leq 100$ µs                                                          |                       |                         |                |                         |                |
| Lact       | $I_1(u_1, y_1) = 518 \mu s$ to $518 \mu s$ , MED = $518 \mu s$ , AVG = $518 \mu s$ |                       |                         |                |                         |                |
| R          |                                                                                    |                       | $r_1(y_1) =$            | : 5000 μs      |                         |                |

 $j_{R1}(r_1) \leq 10 \, \mu s$ 

- Functional requirements cannot be fulfilled
- Expected values are not located at the output
- Non-functional timing requirement are fulfilled
- Latency of the acknowledgement lay within the allowed range

#### RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

 $\Delta_R$ 

5 s



| RT-Eth | ernet | Residual |
|--------|-------|----------|
| Bus    | Simu  | lation   |

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

 $u_1 = HL_OFF$  $u_1 = LED_0$  $u_1 = LED_100$  $u_1 = LED_50$  $u_1 = LED_101$  $u_1 = LED_75$ Y  $y_1 = HL_0FF$  $y_1 = LED_0$  $y_1 = LED_100$  $y_1 = LED_50$  $y_1 = LED_50$  $v_1 = LED 75$  $y_1 = HL_0FF$  $y_1 = HL_OFF$  $v_1 = HL OFF$  $y_1 = HL_OFF$  $y_1 = HL_OFF$  $y_1 = HL_0FF$  $I_1(u_1, v_1) = 500 \,\mu s$  $\Delta_I$  $i_{l,1}(I_1) < 100 \,\mu s$  $h(u_1, v_1) = 518 \, \text{us}$  to  $518 \, \text{us}$ . MED =  $518 \, \text{us}$ . AVG =  $518 \, \text{us}$ Lact R  $r_1(v_1) = 5000 \, \text{us}$  $i_{R1}(r_1) < 10 \,\mu s$  $\Delta_R$  $R_{act}$  $r_1(y_1) = 4998 \,\mu s$  to  $5002 \,\mu s$ , MED =  $5000 \,\mu s$ , AVG =  $5000 \,\mu s$ 

7 s

95

11 s

- Functional requirements cannot be fulfilled
- Expected values are not located at the output
- Non-functional timing requirement are fulfilled
- Latency of the acknowledgement lay within the allowed range

T

1 s

25

## **Agenda**



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background RT Ethernet RBS

Application & Results

Application & Results

- 1 Motivation & Introduction
- 2 Background
- 3 Real-time Ethernet Residual Bus Simulation
- 4 Application & Results
- 5 Conclusion & Outlook

#### **Conclusion**



 Residual bus simulator is directly connected with the SUT

 Message classes and a synchronization procedure are supported

- Non-functional timing requirements are modeled within UML-MARTE
- Abstract test case model models functional and non-functional test data
- Utilization of abstract test cases as simulation model
- Successful utilization for the validation of an RT Ethernet application

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

#### Outlook



RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

RT Ethernet RBS

Application & Results

Application & Results

Conclusion & Outlook

 Investigate how AUTOSAR and EAST-ADL could co-exist with our approach

- Implement a RBS with a more suitable architecture without dual-port memory
- Analyze the real-time and performance aspects of the new architecture



# Thank you for your attention



#### RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Application & Results

Conclusion & Outlook

Visit us at:

https://core.informatik.haw-hamburg.de

